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Abstract
Spin transfer is a typical spintronics effect that allows a ferromagnetic
layer to be switched by spin injection. All experimental results concerning
spin transfer (quasi-static hysteresis loops or AC resonance measurements)
are described on the basis of the Landau–Lifshitz–Gilbert equation of the
magnetization, in which additional current dependent terms are added, like
current dependent effective fields and current dependent damping factors, that
can be positive or negative. The origin of these terms can be investigated further
by performing stochastic experiments, like one-shot relaxation experiments
under spin injection in the activation regime of the magnetization. In
this regime, the Néel–Brown activation law is observed which leads to the
introduction of a current dependent effective temperature. In order to define
these counterintuitive parameters (effective temperature and negative damping),
a detailed thermokinetic analysis of the different sub-systems involved is
performed. This report presents a thermokinetic description of the different
forms of energy exchanged between the electric and the ferromagnetic sub-
systems at a normal/ferromagnetic junction.

The derivation of the Fokker–Planck equation in the framework of the
thermokinetic theory allows the transport parameters to be defined from
the entropy variation and refined with the Onsager reciprocity relations and
symmetry properties of the magnetic system. The contribution of the spin
polarized current is introduced as an external source term in the conservation
laws of the ferromagnetic layer. Due to the relaxation time separation, this
contribution can be reduced to an effective damping. The flux of energy
transferred between the ferromagnet and the spin polarized current can be
positive or negative, depending on the spin accumulation configuration. The
effective temperature is deduced in the activation (stationary) regime, provided
that the relaxation time that couples the magnetization to the spin polarized
current is shorter than the relaxation to the lattice.

(Some figures in this article are in colour only in the electronic version)
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In the context of spintronics, the electrical resistances of magnetic nanostructures are tuned with
the magnetization states. Giant magnetoresistance (GMR), or anisotropic magnetoresistance
(AMR) allows the magnetization states of nanolayers to be measured with great precision.
Such magnetoresistances are scalable reading processes and are used for magnetic sensors
and random access memory (MRAM) technology. The possibility of controlling the magnetic
configuration of a magnetic nanostructure by injecting spins emerged only in recent studies,
opening the way to a readily scalable writing process for MRAM application. This approach is
also extended to thermally assisted switching, in which the heat flux is exploited in order to help
the magnetization reversal. In order to control the magnetic configurations and their stabilities
(for reading and writing processes), in such magnetic nanopillars, it is necessary to understand
on one hand the processes responsible for the magnetization reversal (in the presence of a
magnetic field and heat), and on the other hand, the processes governing spin dependent
electronic transport at normal/ferromagnetic interfaces. Taken separately, the two effects are
rather well understood today. However, coupling the two processes leads one to consider a
large variety of possible mechanisms, called spin transfer, that involve an ensemble of non-
equilibrium sub-systems in interaction, with different populations of electrons and different
populations of spins. The present work tries to clarify this picture with a phenomenological
analysis based on non-equilibrium thermodynamics of open systems.

Magnetization reversal provoked by spin injection has been observed in magnetic
nanostructures of various morphologies, from spin valve multilayers [1–8] to nanowires [9–11]
and point contacts [12–15], and different kinds of magnetic domain walls [16–24]. In order
to describe and interpret these observations, physicists were forced to add one or two current
dependent terms into the well known dynamical equations that describe a ferromagnetic layer
coupled to a heat bath (Fokker–Planck or corresponding Landau–Lifshitz–Gilbert equations).
However, the question remains open about the deterministic (e.g. spin torque) or stochastic
(e.g. fluctuation and noise) nature of the terms to be added.

It has been observed that for a time window larger than the nanosecond timescale, and
in the framework of one-shot measurements (i.e. non-averaged, or irreversible measurements),
the magnetization reversal induced by spin injection is an activated process, with two-level
fluctuations [25–28] or simple irreversible jumps [26, 29]. In these experiments, governed by
stochastic fluctuations and noise, the observed effect is accounted for by a current dependent
effective temperature in the Néel–Brown activation law [26]. In contrast, for quasi-static
measurements (e.g. magnetoresistance measured as a function of the magnetic field or current
with DC systems or a lock-in detection system) and for high frequency measurements,
oscillations and resonances indicate, in the frequency domain, the manifestation of quasi-
ballistic precession effects [15, 28, 30–33]. In these last experiments, the stochastic nature of
the signal is reduced to line shapes of the resonance, and the behaviour is described in terms of
current dependent effective fields and damping factors, within a generalized Landau–Lifshitz–
Gilbert (LLG) equation. This deterministic formulation is motivated by the pioneering works
of Berger [34] and Slonczewski [35] concerning spin torque theory. However, the deterministic
approach cannot directly account for the magnetic relaxation measurements performed in the
activation regime (as discussed in section 4.1 below). In contrast, the hypothesis used here is
that of an open system.

In order to describe the open system composed by the ferromagnet and the spin injection
at the interfaces, a detailed analysis of the different sub-systems is performed on the basis of
thermokinetic theory [36–49]. The first step (the first section below) is to identify the relevant
sub-systems of interest (pointing out the difference between the spin accumulation due to
the diffusion of spin dependent conduction electrons at an interface, and the magnetization
of a ferromagnetic layer), the coupling between them, and the role of the microscopic
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degree of freedom that will be reduced to the action of the environment. In section 2, spin
injection and spin dependent transport are described in the framework of the two-spin-channel
approximation (a conduction channel that carries spin up and a conduction channel that carries
spin down, defined by the conductivities). Giant magnetoresistance, spin accumulation, and
corresponding entropy production, or heat transfer, are deduced. Beyond the two-spin-channel
approximation, the analysis is extended to four channels with the introduction of two other
electronic populations (typically s-like for conduction electrons and d-like for the ferromagnetic
order parameter), and the relaxation between them. In the same manner as spin-flip scattering
coupled the spin up and spin down channels, this relaxation defines a dissipative coupling
between the ferromagnet and the spin dependent electric sub-systems. The third section is
devoted to the detailed description of the ferromagnetic order parameter coupled to a heat bath
(without spin injection). Both the rotational Fokker–Planck equation and the corresponding
LLG equation are derived in the framework of the thermokinetic theory, i.e. with the help of
the first two laws of thermodynamics and the Onsager reciprocity relations only. The coupling
of the ferromagnetic order parameter to the heat bath is introduced via the chemical potential
with a typical Maxwell–Boltzmann diffusion term including the temperature [36, 43]. The
Néel–Brown law is deduced in the activation regime.

The last section is devoted to spin transfer, i.e. to the ferromagnetic Brownian motion
activated by spin injection. The consequences of the Slonczewski spin torque hypothesis is first
analysed as a deterministic term added to the Gilbert equation. A criterion for the validity of the
spin torque approach is deduced. In contrast to the deterministic point of view, the open system
approach is introduced with the contribution of s–d-like spin accumulation at the interfaces,
as a source term in the conservation laws of the magnetization. Explicitly, it is shown that if
n is the density of magnetic moments oriented in a given direction (θ, φ) of the unit sphere,
and �JM is the corresponding flux of magnetic moments (this flux is not a displacement in the
usual space), the conservation of n can be written as ∂n/∂ t = −div �JM + ∫

N−F �̇(z) dz, where
the divergence is defined on the sphere and �̇ is the relaxation rate, integrated through the
normal–ferromagnetic interfaces. This equation defines the irreversible spin transfer occurring
in the ferromagnetic layer, taken as an open system. The relaxation rate is related to the
spin accumulation �μ through an Onsager transport coefficient L, �̇ = L�μ (where �μ is
proportional to the current). L is linked to the relaxation times through the charge conservation
laws (or electric screening properties).

Due to the large relaxation time separation, the contribution of the source term can be
reduced to the effect of an environment that is responsible for an effective damping and effective
fluctuations (or effective temperature). The energy transferred between the ferromagnetic layer
and the sub-system defined by the spin accumulation conduction electrons can be positive
or negative, depending on the sign of the spin accumulation at the different interfaces. The
effective temperature is deduced in the activation (stationary) regime, because the relaxation
time that couples the magnetization to the spin polarized current short cuts the relaxation to the
lattice.

1. Thermokinetic approach

1.1. Interacting sub-systems

The general scheme of the thermokinetic approach is described in [37, 39–41, 43]. The method
consists in defining the state of the system with a set of the relevant extensive variables, say
{s, xi }, where xi is, e.g., the density of particles in the sub-system i , or equivalently, the density
of component i of a multicomponent fluid, and s is the total entropy density. The conservation
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equations should then be written out, and the two laws of thermodynamics applied. The
conservation equation for the component i can be written as

∂ni

∂ t
= −div( �Ji)+

∑

j

νi j �̇ j . (1)

The divergence of the current �Ji describes the conservative part of the process, and the
term �̇ j is a source term that describes the relaxation of νi j components i into the component
j (νi j � 0), or inversely (νi j � 0).1 It is proportional to the inverse of the relaxation time
�̇ j ∝ τ−1 (see the appendix). Physically, the term �̇ j describes the relaxation process that
changes the internal degree of freedom (e.g. spins, electric charges, internal configuration).
In terms of chemical reactions, �̇ j is the velocity of the reaction, i.e. the generalized flux
thermodynamically conjugated to the chemical affinity A j (defined below). The summation
over all sub-systems, or all components of the fluid, is that of a conserved variable:

∑
i
∂ni
∂ t =

−div(
∑

i
�Ji). The same holds, of course, for the energy E : ∂E

∂ t = −div( �JE ), where JE is the
flux of energy. In contrast, the entropy production of the total system is not conservative in
general, due to the irreversible processes (in other words, information is lost). The equation for
the entropy production of the whole system takes the canonical form ∂s

∂ t = −div( �Js)+I, where
Js is the flux of entropy, and I is the internal entropy production, or irreversibility, which is a
consequence of the second law of thermodynamics: I � 0 (assuming T � 0). According to
the first law of thermodynamics, the energy E is a state function that is also scalar, extensive
and conserved, so

∂E(s, {xi })
∂ t

= ∂E

∂s

∂s

∂ t
+
∑

i

∂E

∂xi
· ∂xi

∂ t
(2)

where ∂E/∂s = T is the temperature, ∂E/∂xi ≡ Fi is the generalized force associated
with the flux ∂xi/∂ t . In the following we will deal exclusively with the chemical potentials
μi = ∂ni/∂E , unless otherwise specified (i.e. there is no need to introduce other extensive
variables). The following Gibbs relation is obtained as a direct consequence of the first law:
T ∂s
∂ t = ∂E

∂ t −∑
i
∂ni
∂ t μi . After having inserted the conservation equations, equation (1), into (2),

the following form is obtained2:

T
∂s

∂ t
= −div( �JE )+

∑

i

μi div( �Ji )−
∑

i j

μi νi j�̇ j . (3)

Using the development div(μi �Ji) = μi div( �Ji )+ �Ji · �grad(μi), equation (3) can be rewritten
in the canonical form

∂s

∂ t
= −div( �Js)+ I (4)

where

�Js = 1

T
�JE −

∑

i

μi

T
�Ji

I = �JE · �grad

(
1

T

)

−
∑

i

�Ji · �grad
(μi

T

)
− 1

T

∑

i j

μi νi j �̇ j

(5)

where the last term on the right-hand side defines the dissipative coupling between the sub-
systems. As will be shown in the last section, this term will be responsible for the irreversible

1 The coefficient νi j is defined by the stoichiometric coefficients. If the chemical reaction i can be written as
ν′

i A A → ν′′
i A A, with stoichiometric coefficients ν′

i A and ν′′
i A , the coefficient νi A appearing in the continuity equations

is νi A = ν′′
i A − ν′

i A .
2 In what follows, there is no kinetic energy, i.e. no inertial effects. This is why the equations are reduced to the
simplest expression.
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spin transfer effect described in this work. What is unusual in dealing with the second law is
manipulation of an inequality (I � 0) instead of an equality, and consequently dealing with
sufficient conditions instead of equivalences. Here, the condition I � 0 leads to introduction
of a positive matrix {Li j}i j of Onsager–Casimir transport coefficients that are state functions of
the variables {s, xi}, in order to build a positive quadratic form. The condition is fulfilled if the
flux Ji and the relaxation velocity �̇i have the form

�Ji = −
∑

j

Li j �grad(μ j)

�̇i =
∑

j

Li j A j
(6)

where

A j ≡ −
∑

k

νik μk (7)

is the chemical affinity of the corresponding reaction j (and we have A j = −∂E/∂� j) [50].
Furthermore, due to the time reversal symmetry of the microscopic equations, the transport
coefficients follow the Onsager–Casimir reciprocity relations [51]. In the case of chemical
reaction, the cross-coefficients that couple the flux �J to the relaxation process �̇ are assumed
to be zero, because, according to the Curie principle, only processes of identical tensorial nature
are coupled. Note however that, if the relaxation rates describe a relaxation process like spin-
flip relaxation, this may no longer be the case, and cross-coefficients may exist. This problem
will be invoked in the last section of this work.

Assuming zero cross-coefficients, and inserting equation (6) into the continuity
equation (1), we obtain an equation for the time variation of the density ∂ni/∂ t in terms of
derivatives of the chemical potentials μ j :

∂ni

∂ t
=
∑

j

Li j ∇2 μ j +
∑

jk

νi j Lik Ak . (8)

It is then sufficient to know the form of the chemical potential as a function of the density
(for pure fluids: μ(ni ) = μ0 + kT ln(ni)) in order to derive the corresponding differential
equation, or Fokker–Planck equation, with diffusion and relaxation terms (see sections 2, 3 and
the appendix below).

What we gain in performing this analysis is the clear identification of the conservative and
dissipative flux (through the internal entropy production), and the ability to define a dissipative
process that couples the sub-systems beyond the usual deterministic coupling (electric field,
magnetic field, pressure, etc). This dissipative coupling appears with an additional transport
coefficient L, defined unequivocally via the transport equations. In the case studied below, the
matrix L is composed by the conductivities σi associated with each channel (i.e. associated
with a given electronic population), the thermal conductivity, or the corresponding Seebeck
(thermoelectric power) and Peltier coefficients [48, 52, 53] and the ferromagnetic transport
coefficients: gyromagnetic ratio 
 and the Gilbert damping coefficient η. Beyond this, the
flux of entropy or heat allows the spin transfer to be understood in an open system in terms of
relaxation with a supplementary Onsager coefficient L. As shown in the last section, this term
is responsible for an effective temperature Teff and effective (negative) damping αeff.

1.2. The model

The model is based on the hypothesis that the ferromagnetic order parameter �M is well
differentiated from the sub-system composed by spin polarized conduction electrons, although

5



J. Phys.: Condens. Matter 19 (2007) 165213 J-E Wegrowe et al

Figure 1. Thermokinetic picture of irreversible spin transfer. A ferromagnetic system (with
magnetization M), and an electric system with spin accumulation density�n and electronic density
at the Fermi level n0. The chemical potential μ is defined for each spin channel. The three sub-
systems are coupled together through the relaxation times τsd (interband s–d-like relaxation) and τsf
(intraband spin-flip relaxation). The sub-systems are also coupled to the current generator I , and to
the heat reservoirs, through the corresponding well known relaxation times τ0 (Néel–Brown waiting
time), τe and τph: elastic and inelastic electronic relaxation times.

the two systems exchange charges, spins, and heat through a relaxation mechanism that will
be described in terms of internal variables [36, 40, 43]. As shown above, the relaxation of an
internal variable (or internal degree of freedom) defines a transport coefficient Lsd related to the
corresponding relaxation time τsd (Lsd ∝ τ−1

sd ; see the appendix for the relation to the relaxation
time, and the electric screening properties).

We hence start with the two sub-systems: the ferromagnet described with the
magnetization �M and the system of two conducting spin channels of the conduction electrons.
The two sub-systems are dynamically coupled through the relaxation time τsd. This relaxation is
qualified as interband relaxation, as opposed to the intraband spin-flip relaxation τsf introduced
in the usual two-spin-channel approximation. The conducting channels are usually described in
terms of the density n↑ of conduction electrons with spin up and the density n↓ of conduction
electrons with spin down. The intraband coupling (accounted for by Lsf or τsf) is responsible
for the spin accumulation mechanism for the stationary regime. For convenience, we redefine
the two channels with the density of spin polarized electrons �n = n↑ − n↓ (‘spin conduction
channel’) and the total density of electrons n0 = n↑ + n↓.

Furthermore, the conduction channels are contacted to a power supply (current generator
here). Strictly speaking, the magnetic system is also contacted to the power supply, e.g. through
the electron of d character [55]. The conduction electrons thermalize each other through a well
known mechanism of elastic scattering τe (that defines the conduction electron reservoir), at
the femtosecond timescale (or below), and are also contacted to the lattice through the Fermi–
Dirac distribution, and inelastic scattering τph. On the other hand, the ferromagnetic order
parameter is contacted to the lattice with a well known relaxation time τ0 that is measured in
ferromagnetic resonance (FMR) experiments, and is typically of the order of the nanosecond
(or a few hundreds of picoseconds). This description leads to the model depicted in figure 1.
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n
α
(μ

α
)δn=

n
0
=

τ
αγ
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γ
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γ
)
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α
) + n

γ
(μ

γ
)

Figure 2. Two-channel model, including relaxation that couples the two electronic populations.

The basic idea developed below rests on the fact that the typical timescales of the dynamics
of the two sub-systems are greatly separated. There is a slow variable, the magnetization, and
fast variables, the degrees of freedom related to the spins of the conduction electrons. It is then
possible to reduce the action of the fast variable to the role of an environment as regards to the
magnetization, like for spin bath relaxation. The effect of the coupling to the spin dependent
electronic sub-system will then be reduced to specific damping and fluctuation terms added to
the usual stochastic equations for the magnetization. This will be our line of reasoning followed
in the last section, after describing the two sub-systems.

2. Spin dependent transport

In order to explain the high resistance and the high thermoelectric power observed in transition
metals, Mott introduced the concept of spin polarized current and suggested that s–d interband
scattering plays an essential role in the conduction properties [54]. This approach in terms
of two conduction bands [55] explained the existence of a spin polarized current in the 3d
ferromagnetic materials [56], and was used for the description of anisotropic magnetoresistance
(AMR) [57, 58], the description of a spin polarizer [59], and thermoelectric power [60]. With
the discovery of giant magnetoresistance (GMR) [61] and related effects [62] (like domain wall
scattering [63–66] discussed below), the development of spintronics focused the discussion on
spin-flip scattering occurring between spin polarized conducting channels [67–72]. The two-
channel model, which describes the conduction electrons with majority and minority spins,
is applied with great efficiency to GMR and spin injection effects [47, 73–78], including
metal/semiconductor [79] and metal/superconductor interfaces [80]. In this context, it is
sufficient to describe the diffusion process in terms of spin-flip scattering without the need
to invoke interband s–d scattering.

It is convenient to generalize the two-spin-channel approach to any relevant transport
channels, i.e. to any distinguishable electron populations α and γ defined by an internal degree
of freedom (see figure 2). The local out-of-equilibrium state near the junction is then described
with a non-vanishing chemical potential difference between these two populations: �μαγ =
μα − μγ 
= 0. In other words, assuming that the presence of a junction induces a deviation
from the local equilibrium, the α and γ populations can be defined by the α → γ relaxation
mechanism itself, that allows the local equilibrium to be recovered in the bulk material
(limz→±∞�μ(z) = 0) [47]. Such considerations have been presented in some important
spintronics studies on the basis of microscopic calculations [54, 57, 58, 67, 69, 77, 78, 81–83].
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The thermokinetic approach allows us to deal with interband relaxation on an equal footing
with spin-flip relaxation, with the help of the transport coefficients only. For this purpose, the
two-spin-channel model is generalized, with the introduction of the corresponding transport
coefficients: the conductivities σα and σγ of each channel define the total conductivity
σt = σα + σγ and the conductivity asymmetry β = (σα − σγ )/σt; the relaxation between
the two channels is described using the parameter L (or equivalently, the relevant relaxation
times τγ↔α).

2.1. The generalized two-channel model

In the framework of the two-conducting-channel model, which includes relaxation from one
channel to the other, it is easy to follow step by step the method described in the first section.
The conservation laws can be written as (assuming a 1D space variable z)

∂nα
∂ t

= −∂ Jα
∂z

− �̇αγ

∂nγ
∂ t

= −∂ Jγ
∂z

+ �̇αγ

(9)

where nα and nγ are the densities of particles in the channels {α, γ }.
The entropy variation can be written as

TI = −Jα
∂μα

∂z
− Jγ

∂μγ

∂z
− �̇αγ (μα − μγ ) (10)

and the application of the second law of thermodynamics leads to introduction of the Onsager
coefficients σα � 0, σγ � 0, and L � 0 [47], such that

Jα = −σα
e

∂μα

∂z

Jγ = −σγ
e

∂μγ

∂z
�̇αγ = L

(
μα − μγ

)

(11)

where �̇αγ describes the relaxation from the channel α to the other channel γ in terms of the
velocity of the reaction α → γ . It is not necessary, in what follows, to distinguish between
the electric part and the pure chemical part of the electrochemical potentials (see [84]). The
effects of the electric charge distribution are described in the appendix, with the introduction
of the screening length l and the relation to the relaxation times. As shown in the appendix, the
Onsager coefficient L is inversely proportional to the electronic relaxation times τα↔γ :

L ∝
(

g

τα→γ

+ f

τγ→α

)

(12)

where f and g are two functions close to unity, and related to the electric charge distributions
(see the appendix). Note that due to our definition of μα and μγ , there is no direct coupling
between the two channels: there is no transport coefficient that couples the first two equations
in (11). This is a consequence of the definition of the electronic populations, or channels,
through the relaxation process itself (the populations are stable if �̇ = 0). In the context
presented here, the term for spin mixing, often used in spintronics, should then refer to the
relaxation process �̇ (spin-flip or s–d relaxation), and not to the existence of cross-coefficients
in equation (11), as introduced in [53].

The total current Jt is constant:

Jt = Jα + Jγ = −1

e

∂

∂z

(
σαμα + σγμγ

)
. (13)

8



J. Phys.: Condens. Matter 19 (2007) 165213 J-E Wegrowe et al

Figure 3. Junction between two layers I and II. The chemical potential profile over the interval
[A, B] in the α and γ channels. The A and B points verify μα(A) = μγ (A) and μα(B) = μγ (B).
The two straight lines represent the � variation in each region (�I,�II). It can be directly seen that
the out-of-equilibrium resistance Rne is determined by the � discontinuity at the interface.

However, it is not possible to measure separately the different conduction channels, since
any realistic electric contact short cuts the two channels. What is measured is necessarily the
usual Ohm’s law, Jt = −σt

∂�
∂z , that imposes the reference electric potential� to be introduced,

together with the total conductivity σt = σα + σγ .3 The potential � is hence

e� = 1

σt
(σαμα + σγμγ ). (14)

Let us assume that the two channels collapse to a unique conduction channel for a specific
configuration, the reference, which is a local equilibrium situation: �μeq = 0. The out-of-
equilibrium contribution to the resistance, Rne, is calculated through the relation

Jte Rne =
∫ B

A

∂

∂z
(μα − e�(z)) dz =

∫ B

A

∂

∂z
(μγ − e�(z)) dz, (15)

so

Rne = − 1

Jte

∫ B

A

σα − σγ

2σt

∂�μ

∂z
dz (16)

where the measurement points A and B are located far enough from the interface (inside the
bulk) that �μ(A) = �μ(B) = 0 (see figure 3). The integration in equation (15) is performed
over the regular part of the function only (� and σi are discontinuous)4. Equation (16) allows

3 In all these calculations, the channel parameters σαγ , β, and L are considered as constant in space. It can be shown
that taking into account the gradient only introduces vanishingly small corrections.
4 The Riemann integral is evaluated in the intervals where the derivative is regular. Note that a global calculation over
[A, B], within the framework of the distribution theory, yields zero because �μ(A) = �μ(B) = 0. This simply
means that the integral of the regular part is opposite to the integral of the Dirac masses located at the interface. Let us
note that the out-of-equilibrium resistance is straightforwardly connected to the chemical potential drop between the
A and B points, diminished by the standard potential drop which would result from the application of Ohm’s law. We
obtain JteRne = [μI(A) − μII(B)] − e[�I(A) − �I(0−)] − e[�II(0+) − �II(B)] = [μI(A) − e�I(A)] − [μ(0) −
e�I(0−)]+[μ(0)−e�II(0+)]−[μII(B)−e�II(B)] = e[�I(0−)−�II(0+)]. It can be seen that the second expression
for JteRne above is nothing but the opposite of equation (6), and is equal to the discontinuity of � at the interface,
which provides a simple physical interpretation as illustrated in figure 3.
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the out-of-equilibrium resistance at a simple junction between two layers (composed of the
layers I and II) to be easily calculated. If the junction is set at z = 0 and the conductivities are
respectively σ I

i and σ II
i (i = {α, γ }), we have

JT e Rne =
∫ 0

A

σ I
α − σ I

γ

2σt

∂�μI

∂z
dz +

∫ B

0

σ II
α − σ II

γ

2σt

∂�μII

∂z
dz. (17)

The equilibrium is recovered in the bulk, so

Rne =
(
σ I
α − σ I

γ

σ I
t

− σ II
α − σ II

γ

σ II
t

)
�μ(0)

2Jte
. (18)

The chemical potential difference �μ(z), which accounts for the pumping force opposed
to the relaxation α → γ , is obtained by solving the diffusion equation deduced from
equations (11) and (9), and assuming a stationary regime for each channel, ∂nα

∂ t = ∂nγ
∂ t =

0 [47, 73–76]:

∂2�μ(z)

∂z2
= �μ(z)

l2
diff

(19)

where

l−2
diff = eL(σ−1

α + σ−1
γ ) (20)

is the diffusion length related to the α → γ relaxation.
At the interface (z = 0), the continuity of the currents for each channel can be written as

J I
α(0) = J II

α (0), where

Jα(0) = −σασγ
eσt

∂�μ

∂z
+ σα

σt
Jt (21)

which leads to the general relation:

�μ(0) =
(
σ I
α

σ I
t

− σ II
α

σ II
t

) (
σ I
ασ

I
γ

σ I
t l I

diff

+ σ II
α σ

II
γ

σ II
t l II

diff

)−1

eJt. (22)

Inserting equation (22) into (18), we obtain the general expression for the out-of-
equilibrium resistance (per unit area) produced by the α → γ relaxation mechanism at a
junction:

Rne =
(
σ I
α − σ I

γ

2σ I
t

− σ II
α − σ II

γ

2σ II
t

) (
σ I
α

σ I
t

− σ II
α

σ II
t

)
⎛

⎝

√
σ I
ασ

I
γ eL I

σ I
t

+
√
σ II
α σ

II
γ eL II

σ II
t

⎞

⎠

−1

(23)

where we have used the relation

l−1
diff = 2

√
eL

σt(1 − β2)
. (24)

It is convenient to describe the conductivity asymmetry using a parameter β such that
σα = σt(1 +β)/2 and σγ = σt(1 −β)/2. The out-of-equilibrium contribution to the resistance
then takes the following form:

Rne = 1

2

(βI − βII)
2

√
eL Iσ I

t (1 − β2
I )+

√
eL IIσ II

t (1 − β2
II)

. (25)
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Figure 4. Generic band structure for a 3d ferromagnet with s and d bands schematized for an
arbitrary direction of the wavevector k. The shift between the two d bands for the two spin carriers
up and down is exemplified. The hybridized zone is schematized with dotted lines at the junction
between s and d bands. At the Fermi level four different electronic populations can be identified.

In the case of the sub-system described in terms of two spin channels, the relaxation �̇↑↓
leads to a spin accumulation effect �μ↑↓ at the interface of two identical ferromagnets with an
antiparallel configuration. The corresponding resistance contribution is

R↑↓
sa = β2

s

σt(1 − β2
s )

lsf = β2
s√

eLσt(1 − β2
s )
. (26)

This expression is the well known giant magnetoresistance contribution [47, 73–76, 85, 86].

2.2. The four-channel approximation

In the previous subsections, two different electronic relaxation mechanisms have been invoked
separately in order to describe giant magnetoresistance or anisotropic magnetoresistance. It is
clear however that the two relaxations would take place in parallel, leading to a more complex
redistribution of spins within the different channels. In the present subsection, we consider a
system in which the two mechanisms coexist, leading to a four-channel model [49].

The generic band structure (energy as a function of wavevector �k for a given direction) of
a 3d ferromagnet is schematized in figure 4. The band s is parabolic and the exchange splitting
is very small. In contrast, the d bands are strongly shifted between up and down spin carriers.
The hybridized zone is schematized by the dotted lines at the intersection.

The system is composed of the reservoirs of the injected s electrons and the ferromagnetic
layer composed of the d electrons. At the interface, current injection leads to a redistribution
of the different electronic populations that are governed by spin polarization and charge
conservation laws. Let us assume that the current injected is spin polarized in the down
polarization (↓). The conservation laws should be written out taking into account the reaction
mechanisms between the different populations. At short timescales (electronic scattering) the
relaxation channels are assumed to be the following four:

(I) es↓ → ed↓ (spin-conserved s–d scattering);
(II) es↓ → es↑ (spin-flip scattering for the s population);

(III) es↓ → ed↑ (spin-flip s–d scattering);
(IV) ed↓ → ed↑ (spin-flip scattering for the d population).

11
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Process (I) is assumed to be the main mechanism responsible for anisotropic
magnetoresistance (AMR). Process (II) leads to the well known spin accumulation effect and
was also described in detail in the first subsections. According to the fact that the majority-
spin d band is full and lies at a sizable energy below the Fermi level, the current Jd↑ is negligible
and the channel d↑ is frozen. Processes (III) and (IV) are hence negligible [59]. Consequently,
we are dealing with a three-channel model {s↑, s↓, d↓}.

The total current Jt is composed of the three currents for each channel: Jt = Js↑+Js↓+Jd↓.
In order to write out the conservation laws, the relaxation rate �̇sd is introduced to account for
s–d spin-conserved scattering, and the relaxation rate �̇s is introduced in order to account for
spin-flip scattering. Assuming that all channels are in a steady state (this condition will relax
in the last section, where the magnetic system is coupled to the channels d↓),

∂nt

∂ t
= −∂ Jt

∂z
= 0

∂ns↑
∂ t

= −∂ Js↑
∂z

− �̇s = 0

∂ns↓
∂ t

= −∂ Js↓
∂z

− �̇sd + �̇s = 0

∂nd↓
∂ t

= −∂ Jd↓
∂z

+ �̇sd = 0

(27)

where nt , ns↑, ns↓, nd↓ are respectively the total densities of particles and the density of
particles in the s↑, s↓, d↓ channels. The system is described in terms of the number of electrons
present in each channel at a given time, that defines the four currents, plus the entropy of the
system. The conjugate (intensive) variables are the chemical potentials {μs↑, μs↓, μd↑, μd↓}.
The application of the first and second laws of thermodynamics [47] allows us to deduce the
Onsager relations of the system:

Js↓ = −σs↓
e

∂μs↓
∂z

Js↑ = −σs↑
e

∂μs↑
∂z

Jd↓ = −σd↓
e

∂μd↓
∂z

�̇sd = Lsd
(
μs↓ − μd↓

)

�̇s = Ls
(
μs↑ − μs↓

)

(28)

where the conductivity of each channel {σs↑, σs↓, σd↑, σd↓} has been introduced. The first four
equations are nothing but Ohm’s law applied to each channel, and the two last equations
introduce new Onsager transport coefficients, Lsd↓ and Ls, that respectively describe the
s–d relaxation (I) for minority spins under the action of the chemical potential difference
�μ↓ = μs↓/2 −μd↓ and the spin-flip relaxation (II) under spin pumping�μs = μs↑ −μs↓/2.
According to the appendix, the Onsager coefficients are proportional to the corresponding
relaxation times.

For convenience, we define the usual charge current J0s = Js↑ + Js↓, the minority-spin
current J0↓ = Js↓ + Jd↓, and the two polarized currents δ J↓ = Js↓ − Jd↓ and δ Js = Js↑ − Js↓.
We introduce the σs and σ↑ conductivities {σs = σs↑ + σs↓ and σ↓ = σs↓ + σd↓}. The
conductivity imbalances β↓ and βs between respectively the s↓ and d↓ channels and the s↑
and s↓ channels are

β↓ = σs↓ − σd↓
σ↓

βs = σs↑ − σs↓
σs

.

(29)

12
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Equation (27) becomes
∂ Jt

∂z
= ∂ Jd↓

∂z
+ ∂ Js

∂z
= 0

∂ J0↓
∂z

= ψ̇s

∂δ J↓
∂z

= −2ψ̇sd − ψ̇s

∂ J0s

∂z
= −ψ̇sd

∂δ Js

∂z
= ψ̇sd − 2ψ̇s

(30)

and, defining the quasi-chemical potentials μs = μs↑ + μs↓/2 and μ↓ = μs↓/2 + μd↓,
equation (28) becomes

J0↓ = −σ↓
2e

(
∂μ↓
∂z

+ β↓
∂�μ↓
∂z

)

δ J↓ = −σ↓
2e

(

β↓
∂μ↓
∂z

+ ∂�μ↓
∂z

)

J0s = − σs

2e

(
∂μs

∂z
+ βs

∂�μs

∂z

)

δ Js = − σs

2e

(

βs
∂μs

∂z
+ ∂�μs

∂z

)

�̇sd = Lsd�μ↓
�̇s = Ls�μs.

(31)

The equations of conservation (equation (30)) and the above Onsager equations lead to the two
coupled diffusion equations:

∂2�μ↓
∂z2

= 1

l2
sd

�μ↓ − 1

λ2
s

�μs

∂2�μs

∂z2
= 1

λ2
sd

�μ↓ − 1

l2
sf

�μs

(32)

where

lsd ≡
√
σ↓
(
1 − β2

↓
)

4 eLsd

λs ≡
√
σ↓
(
1 + β↓

)

2 eLs

lsf ≡
√
σs
(
1 − β2

s

)

4 eLs

λsd ≡
√
σs (1 − βs)

2 eLsd
.

(33)

A solution of equations (32) is

�μ↓ = �μ1 +�μ2

�μs = λ2
s

((
1

l2
sd

− 1

�2+

)

�μ1 +
(

1

l2
sd

− 1

�2−

)

�μ2

)
(34)

13



J. Phys.: Condens. Matter 19 (2007) 165213 J-E Wegrowe et al

with

�μ1 = a1e
z
�+ + a2e− z

�+

�μ2 = b1e
z
�− + b2e− z

�−
(35)

where

�−2
± = 1

2
(l−2

sd + l−2
sf )

⎛

⎝1 ±
√√
√
√1 − 4

l−2
sd l−2

sf − λ−2
s λ−2

sd
(
l−2
sd + l−2

sf

)2

⎞

⎠ .

The constants a1, a2, b1, b2 are defined by the boundary conditions. It can then be seen
that the usual spin accumulation corresponding to �μs also depends on the spin-conserved s–
d electronic diffusion which is known to be efficient [59] and, conversely, that spin-conserved
diffusion is able to lead to a spin accumulation, or d spin accumulation effects. Accordingly, we
expect to measure some typical effects related to spin accumulation in single magnetic layers,
or if βs = 0: this point will be illustrated in the new expression for the magnetoresistance
(equation (39) below), and in section 4 through the effect of current induced magnetization
switching (CIMS). s–d relaxation adds a new contribution to the resistance, which plays the role
of an interface resistance arising from the diffusive treatment of the band mismatch [67–69].

The resistance produced by the usual spin accumulation contribution and the contribution
of s–d relaxation are defined (see equation (16)) by

Rsa = −1

eJt

∫ A

B

∂

∂z
(μi −�(z)) dz (36)

where �(z) is the total electric field and μi is one of the chemical potentials. Provided that the
total current is Jt = Js↑ + Js↓ + Jd↓, or

Jt = −σt

e

∂

∂z

(
σd↓
σt
μd↓ + σs↓

σt
μs↓ + σs↑

σt
μs↑

)

, (37)

the total electric field can also be written (from equation (28)) as

�(z) = Jt

σt
= −1

e

(
σd↓
σt

∂μd↓
∂z

+ σs↓
σt

�μ↓
∂z

+ σs↑
σt

�μs

∂z

)

(38)

where σt = σs↑ + σs↓ + σd↓. The resistance is given by

Rsa = − 1

eJt

∫ B

A

(
σs↓
σt

∂�μ↓
∂z

+ σs↑
σt

∂�μs

∂z

)

dz. (39)

This three-channel model brings to light the interplay between band mismatch effects and
spin accumulation, in a diffusive approach. It is interesting to note that the local neutrality
charge condition which is often used (see for instance equation (4) in [87]) was not included,
as described in the appendix. On the contrary, we have imposed the conservation of the current
at any point of the conductor. Indeed, electron transfer from one channel to another where the
electron mobility is different induces a local variation of the total current.

The resolution of the coupled diffusion equations is discussed elsewhere [49].

2.3. Domain wall scattering

In the description given so far, the spin quantification axis that defines up and down spin states
was fixed through the whole structure (i.e. through the layers and the interfaces). Provided
that the spin quantification axis follows the direction of the magnetization, it could be non-
uniform throughout a ferromagnetic layer, or crossing an interface. This is especially the case
in the presence of a magnetic domain wall. In a thin enough magnetic domain wall the spin
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would not follow the quantification axis adiabatically, leading to spin dependent domain wall
scattering (DWS) [63–66]. This effect has been investigated intensively in the last few decades
in various structures [72]. The underlying idea is however rather simple, and can be formulated
easily with a generalization of the two-spin-channel approach. For the sake of simplicity, this
generalization will be performed only for the two electronic populations {α, γ }.

Like in [47], we start with the conservation of the particles for the two channels, in a
discrete model. The system is described as a layer �k in contact with a left layer �k−1 and a
right layer�k+1. The spin-flip scattering introduced in the previous sections is described be the
reaction rate �̇k . A probability (1−�ε(k)) of spin-flip alignment along the quantification axis
is introduced. In the case of ballistic alignment (1 − �ε(k)) = cos2(�θ(k)/2) where �θ(k)
is the angle between the magnetization of two adjacent layers �k−1 and �k . The conservation
of the particles is now described by

dNα
dt

= (1 −�ε(k))I k−1→k
α − I k→k+1

α +�ε(k)I k−1→k
γ − �̇k

dNγ
dt

= (1 −�ε(k))I k−1→k
γ − I k→k+1

γ +�ε(k)I k−1→k
α + �̇k .

(40)

With the notation introduced in the previous sections, the entropy variation can be written
in the following way:

T
dS

dt
= P Rl →1

� − P�→Rr

�

+
�∑

k=2

1
2

(
�μk−1 −�μk + 2(1 −�ε(k))�μk

)
δ I k−1→k

s

+
�∑

k=2

1
2 (μ

k−1 − μk) I k−1→k
0 +

�∑

k=1

�μk �̇k (41)

where we have introduced I0 = Iα + Iγ , δ I = Iα − Iγ , μ0 = μα + μγ , and �μ = μα − μγ .
The terms P Rl →1

� and P�→1
� stand for heat and chemical transfer from the reservoirs to the

system �.
After taking the continuum limit, the internal entropy production I (or irreversibility) reads

T · I = −1

2

∂μ0

∂z
J0 + 1

2

(

−∂�μ
∂z

+ 2ε�μ

)

δ J +�μ�̇. (42)

The first term is the Joule effect, the second is the dissipation related to the spin
accumulation process that occurs at the interface, or for a magnetic domain wall, and the
third term is the dissipation due to spin-flip (or s–d) electronic relaxation. The expression for
the entropy production equation (42) allows the Onsager relations generalizing equation (11)
or (28) to be deduced:

J0 = −σ0

2e

(
∂μ0

∂z
+ β

(
∂�μ

∂z
− 2ε�μ

))

δ J = −σ0

2e

(

β
∂μ0

∂z
+ ∂�μ

∂z
− 2ε�μ

)

�̇ = Lαγ�μ

(43)

where ε = lim�k→0
�ε(k)
�k , and, as already introduced, σ0 = σα + σγ and β = (σα − σβ)/σt.

The diffusion equation for�μ, obtained in the stationary regime, is modified accordingly:

∂2�μ

∂z2
=
(

1

l2
diff

+ 1

l2
DW

)

�μ+ 1

κ

∂�μ

∂z
(44)
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where the length ldiff as been defined in the first section, equation (20):

ldiff =
√
σ0(1 − β2)

2eL
(45)

and the domain wall diffusion length lDW is defined as

lDW =
√
(1 − β2)

4ε
(46)

while the length κ is given by

κ−1 = ε
2β2

1 − β2
. (47)

The magnetoresistance is modified with respect to equation (19), due to the new term ∂z�μ(z)
in the diffusion equation. It is worth pointing out that a spin accumulation�μ(z) 
= cst should
be expected in the case of spin polarized current (β 
= 0) even without the usual spin-flip
contribution, i.e. in the ballistic limit.

3. Ferromagnetic Brownian motion and magnetization switching

3.1. Thermokinetic derivation of the Fokker–Planck equation

The description given in the previous sections is related to the transport properties of charge
carriers in the case of spin polarized current. In spintronics experiments, the electric current
is spin polarized through a ferromagnetic layer, but it is not necessary to describe the
ferromagnetic order parameter as such. This is of course no longer the case for current induced
magnetization switching experiments, where the magnetization is the measured variable.

The magnetization is a fascinating degree of freedom, that has to be described in
terms of rotational Brownian motion. The description of the dynamics of ferromagnetic
particles coupled to a heat bath is a very active field of investigation [88–93], and the
resulting predictions are rather well known and validated experimentally at large [94–96] and
short [97–101] timescales. The magnetization relaxation described here is limited to the so-
called Néel relaxation that involves only the magnetic moment, in contrast to the Debye inertial
relaxation occurring in ferrofluids (in which the ferromagnetic particles rotate in a viscous
environment, leading to surprising inertial effects like negative viscosity [46]).

The aim of this subsection is first to show that the rotational Fokker–Planck equation
governing the dynamics of the magnetization �M of one monodomain particle coupled to the
heat bath can also be obtained applying step by step the approach used in the previous sections.
The resulting Fokker–Planck equation with the corresponding Onsager transport coefficients,
and the hypothesis used, can then be compared term by term to the previous study of spin
dependent charge transport.

3.1.1. Geometrical representation of the statistical ensemble. Let � be a statistical ensemble
of N identical monodomain particles of volume v, having the same energy per unit volume
V mag(θ, φ), magnetization �M and thermostat temperature T . The vector �M is defined by the
angles θ and φ. The ensemble � can be represented by a distribution of representative points
over the unit sphere (figure 5) with a density n(θ, φ).

We divide the ensemble of representative points � into sub-ensembles �θ,φ such that the
magnetization is confined within the solid angle δVθ,φ = sin θ dθ dφ (i.e. the representative
points lie between two consecutive parallels and meridians over the sphere).
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(a) (b)

Figure 5. (a) The figure on the left illustrates the flow of representative points over the unit sphere:
J θ and Jφ . (b) The figure on the right illustrates a particular case of distribution of points on
the sphere: the points are concentrated at two attractors, one with more particles than the other
(asymmetric double-well potential).

As the particles undergo changes of magnetization orientation, the representative points
move on the sphere, and there is a net surface flux of representative points �J mag; the
representative points move from one sub-ensemble�θ,φ to another sub-ensemble�θ+�θ,φ+�φ.
The probability of finding a particle with the magnetization orientation within the solid angle
dVθ,φ at a given time t is dP (θ, φ, t) = n(θ,φ,t)

N dVθ,φ .

3.1.2. Conservation laws. The sub-ensembles of representative points �θ,φ are described
using the following extensive parameters: the entropy dS = s(θ, φ, t) dVθ,φ , the number of
points dN = n(θ, φ, t) dVθ,φ and the energy dE = e(θ, φ, t) dVθ,φ , where s and e are the
entropy and energy densities. The flow (of points, energy, and entropy) is described as the
two-dimensional flux �J ( �Jn, �Je and �Js):

�J = J θ �uθ + J φ �uφ (48)

and accounts for the flow of the corresponding magnetic moments relaxing or precessing along
the coordinates θ, φ, where �ur , �uθ , �uφ are the unit vectors in the spherical coordinate system.

The conservation laws of the number, energy and entropy of the particles contained in the
sub-ensemble �θ,φ can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂n
∂ t = −div �Jn

∂e
∂ t = −div �Je

∂s
∂ t = −div �Js + I

⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂n
∂ t = − 1

sin θ
∂
∂θ

(
J θn sin θ

)− 1
sin θ

∂ J φn
∂φ

∂e
∂ t = − 1

sin θ
∂
∂θ

(J θ
e sin θ

)− 1
sin θ

∂J φ
e

∂φ

∂s
∂ t = − 1

sin θ
∂
∂θ

(J θ
s sin θ

)− 1
sin θ

∂J φ
s

∂φ
+ I

(49)

where in contrast to the energy and number of particles, the entropy s is not a conservative
quantity, and an internal entropy production term I (or irreversibility) is added to the entropy
flux �Js (third equation in equation (49)).

The expression for the first law of thermodynamics allows the energy variation to be
expressed as a function of the partial derivatives that define the chemical potentials and the
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temperature μ̃ ≡ ∂e
∂n and T ≡ ∂e

∂s . The intensive variables μ̃ and T are also functions of
(θ, φ, t) except if imposed by a reservoir.

∂s

∂ t
= 1

T

∂e

∂ t
− μ̃

T

∂n

∂ t
(50)

where μ̃ ≡ ∂ne contains all contributions to the energy (see below).
The expression for the internal entropy variation can be obtained using the conservation

laws
∂s

∂ t
= − 1

T
div �Je + μ̃

T
div �Jn (51)

or, in another form,

∂s

∂ t
= −div

(
1

T
�Je − μ̃

T
�Jn

)

+ �Je · �grad

(
1

T

)

− �Jn · �grad

(
μ̃

T

)

. (52)

Comparing this last equation with the third equation from (49), we can deduce the form of
the entropy production I:

�Js = 1

T
�Je − μ̃

T
�Jn

I = �Je · �grad

(
1

T

)

− �Jn · �grad

(
μ̃

T

)

.

(53)

The entropy production I is a sum of products of the fluxes �Jk and the corresponding
conjugate forces �Fk [43].

We assume in the following that the temperature T (θ, φ) = T is fixed by a unique
thermostat: the first term in the right-hand side of the equation (53) vanishes.

A sufficient condition for imposing the second law of thermodynamics I � 0 is then
building a quadratic form. This leads us to define the matrix L of Onsager transport
coefficients Li j (θ, φ) (that are state functions of dimension [energy]−1[time]−1) such that
Ji = ∑

j(Li j∂ j μ̃), where the symmetrized L matrix is positive. The Onsager reciprocity
relations impose furthermore that Li j = ±L ji , where the sign (−) is present if Li j is a function
of the magnetic field (there is no angular velocity here) [40].

The following relations are deduced:

�Jn = −L �grad μ̃ ⇒

⎧
⎪⎪⎨

⎪⎪⎩

J θn = −Lθθ
∂μ̃

∂θ
− Lθφ

1

sin θ

∂μ̃

∂φ

J φn = −Lφθ
∂μ̃

∂θ
− Lφφ

1

sin θ

∂μ̃

∂φ

(54)

where Lθφ = −Lφθ . The first of equations (49) can be rewritten as

∂n(θ,φ,t)
∂ t

= −div �Jn = +div
(
L �grad μ̃

)
(55)

⇒ ∂n(θ,φ,t)
∂ t

= 1

sin θ

∂

∂θ

[

sin θ

(

Lθθ
∂μ̃(θ,φ,t)

∂θ
+ 1

sin θ
Lθφ

∂μ̃(θ,φ,t)

∂φ

)]

+ 1

sin θ

∂

∂φ

[

Lφθ
∂μ̃(θ,φ,t)

∂θ
+ 1

sin θ
Lφφ

∂μ̃(θ,φ,t)

∂φ

]

(56)

where Lθθ � 0 and Lφφ � 0. This is the general expression for the density variation
∂t n(θ, φ, t) of particle number from the sub-ensemble �θ,φ . Note that there is no relaxation
term (�̇) in the conservation law (55) of the magnetization: the flow of representative points
is conserved on the unit sphere. This assumption will be removed in the case of spin injection
performed with electric currents (see the next section).
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In the same manner as for equation (12), the Onsager coefficients are related to the relevant
relaxation times. In the case of ferromagnetic insulators, the relaxation channels are well
defined [102], and the coefficients Li j are directly related to the relaxation times T1 and T2

measured in ferromagnetic resonance experiments.

3.2. The rotational Fokker–Planck equation

In thermokinetics, the intensive parameter which controls the number of particles of a sub-
ensemble is the chemical potential μ̃. The relevant energy terms are contained in the
deterministic potential V mag, and the stochastic term is defined by thermal fluctuations due
to the coupling to a relevant heat bath. Anticipating the last section, it is worth pointing out that
the relevant heat bath is defined by the degrees of freedom of the environment which are those
of the lattice or those of the electronic system (as discussed below). The fluctuations are taken
into account through a temperature dependent chemical potential that takes the following form
(derived in the general case by Mazur in [43]):

μ̃ ≡ kBT ln(n)+ vV mag(θ, φ)+ μ0. (57)

The first term on the right-hand side of equation (57) accounts for the density of particles
at temperature T , the second term vV mag represents the magnetic potential energy that defines
the local magnetic field �Heff = −�∇V mag (where the two-dimensional gradient �∇ is defined on
the surface of the unit sphere) and the third term is a constant which is related to the chemical
nature of the particles.

The local equilibrium condition ∂i μ̃ = 0 defines stationary fluxes (due to both drift and
diffusion) that are mutually compensated along the coordinate i . This point is well illustrated
in the work of Guggenheim while introducing the electrochemical potential [38] in order to
generalize the description of an electric fluid to ionic solutions.

Inserting the expression for μ̃, and using the reciprocal relation Lθφ = −Lφθ , the
equations for fluxes and the variation of particles take the form

J θn = −
(

h′ ∂V mag

∂θ
− g′

sin θ

∂V mag

∂φ

)

n −
(

h′ kBT

v

∂n

∂θ
− g′

sin θ

kBT

v

∂n

∂φ

)

J φn = −
(

g′ ∂V mag

∂θ
+ k ′

sin θ

v

kBT

∂V mag

∂φ

)

n −
(

g′ kBT

v

∂n

∂θ
+ k ′

sin θ

∂n

∂φ

) (58)

where the magnetic diffusion coefficients have been defined in the following form:

h′ = Lθθ v

n
; g′ = − Lθφv

n
= Lφθv

n
; k ′ = Lφφ

kBT

n
� 0. (59)

Assuming that g′ is constant, equation (56) can be rewritten as
∂n(θ, φ)

∂ t
= 1

sin θ

∂

∂θ

{

sin θ

[(

h′ ∂V mag

∂θ
− g′

sin θ

∂V mag

∂φ

)

n + h′ kBT

v

∂n

∂θ

]}

+ 1

sin θ

∂

∂φ

{(

g′ ∂V mag

∂θ
+ k ′

sin θ

v

kBT

∂V mag

∂φ

)

n + k ′

sin θ

∂n

∂φ

}

. (60)

The expression (60) represents the rotational Fokker–Planck equation obtained by
thermokinetic means. It is identical to that obtained by Brown [89] through stochastic
calculations.

Furthermore, the Onsager matrix also follows the symmetry of the system, and is invariant
on rotation around the anisotropy axis, so Lφ,φ = Lθ,θ . The following relations are obtained
for the magnetic transport coefficients:

Lθθ = Lφφ = h′n
v

= k ′n
kBT

(61)
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which permits us to write out the equations above in a compact vectorial form:

�J = −g′ �ur ×
(

n �∇V mag + kBT

v
�∇n

)

+ h′ �ur ×
[

�ur ×
(

n �∇V mag + kBT

v
�∇n

)]

∂n

∂ t
= g′ �∇

{

�ur ×
(

n �∇V mag + kBT

v
�∇n

)}

− h′ �∇
{

�ur ×
[

�ur ×
(

n �∇V mag + kBT

v
�∇n

)]}

(62)

where �∇ is the two-dimensional gradient operator defined on the surface of the unit sphere and
�ur is the spherical radial unit vector. It is to be noted that the second equation has drift terms
which contain ∇V mag, and diffusion terms which contain �∇n. The terms k ′ = h′ kBT

v
and g′ kBT

v

are the rotational diffusion coefficients and the terms g′n and h′n represent drift coefficients.

3.3. Landau–Lifshitz–Gilbert equation with diffusion

Using the first equation from (62), one can deduce the Landau–Lifshitz–Gilbert equation with
diffusion. As the flux is related to the time derivative of the unit vector �ur through the relation

�J = n
d�ur

dt
(63)

we arrive at the following equation:

d�ur

dt
= −g′ �ur ×

(

�∇V mag + kBT

v

�∇n

n

)

+ h′ �ur ×
[

�ur ×
(

�∇V mag + kBT

v

�∇n

n

)]

(64)

where the first term in the right-hand side is the precession term, and the second term in
the right-hand side describes the longitudinal relaxation. Multiplied by the amplitude of the
magnetization Ms, equation (64) becomes the well known LLG equation:

d �M
dt

= g′Ms

( �M × �̃H eff

)
+ h′

( �M × �̃H eff

)
× �M (65)

where the effective field �̃H eff = �Heff − kB T
nvMs

�∇n includes the diffusion term. Experimentally,
the first contribution can be observed through ferromagnetic resonance measurements (FMR)
at typical frequencies of tens of GHz (around 100 ps timescales). The thermalization time
(proportional to 1/g′; see the next section) is given by the width of the resonance peaks. Both
frequency and time resolved noise experiments have been also performed in order to measure
precession and thermal spin waves by using giant magnetoresistance properties [97–101]. In
the corresponding measurements, the data are averaged over many shots near an equilibrium
position (linear response regime). In contrast, the measurements at large timescales, typically
beyond a few nanoseconds, access the magnetization reversal for which the precession terms
can be neglected. The one-shot measurements give direct access to the stochastic nature of the
signal [25, 26, 29, 94, 95]: a snapshot is a statistical event, namely the magnetization reversal
from one metastable state to the other, that is governed by the random fluctuations, described
as a ‘Langevin force’ (not present in the averaged LLG equation).

Equation (64) can be put into the Gilbert form by constructing the cross-product × �M on
the left- and right-hand sides of the equation. We obtain the well known Gilbert equation, that
defines the Gilbert damping parameter η:

d �M
dt

= 
 �M ×
(

�̃H eff − η
d �M
dt

)

. (66)
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Figure 6. Double-well potential (continuous line) with stochastic fluctuations (dashed area), and
the definition of the barrier heights.

The transport coefficients h′, g′ and k ′ are related to the Gilbert damping coefficient η, the
gyromagnetic factor 
 and the magnetization at saturation Ms through the following relations:

g′ = 

(
1 + (η
Ms)2

)
Ms

; h′ = η
Msg′. (67)

The Gilbert damping factor is usually expressed through the damping parameter α without
dimension:

α = η
Ms. (68)

3.4. Activation regime and Néel–Brown law

3.4.1. Neglecting precession. In the slow relaxation measurements (the so-called magnetic
after-effect), relaxation is governed by activation over a potential barrier. At long timescales
(beyond tens of nanoseconds to hours), the precessional terms can be neglected. The expression
for the surface current fluxes equation (58) becomes

J θn = −h′ ∂V mag

∂θ
n − h′ kBT

v

∂n

∂θ

J φn = −g′ ∂V mag

∂θ
n − g′ kBT

v

∂n

∂θ

(69)

and the corresponding Fokker–Planck equation becomes

∂n(θ, φ)

∂ t
= 1

sin θ

∂

∂θ

{

sin θ

[

h′ ∂V mag

∂θ
n + h′ kBT

v

∂n

∂θ

]}

. (70)

These expressions will be used in the following subsection for deriving the Néel–Brown
relaxation time.

3.4.2. The double-well potential and the relaxation times. The double-well potential (see
figure 6) is the first approximation of the ferromagnetic particle energy V mag(θ, φ) beyond
the harmonic potential, but it is also a realistic magnetic potential in the case of a uniform
magnetization with uniaxial anisotropy [26]:

V mag = K sin2 θ − Ms Hap cos(θ − ϕ) (71)
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where θ is the direction of the magnetization, ϕ is the direction of the applied field Hap, and K
is the anisotropy constant in terms of energy per unit volume.

In order to apply Brown’s method, we consider a potential which has minima at θ1 and
θ2 = π−θ1, and a maximum at θm . Following Kramers’ transition theory, Brown [89] assumes
that most of the representative points on the unit sphere are concentrated at the energy minima
of V mag(θ) where they are in thermal equilibrium, so locally n takes the form of the Maxwell–
Boltzmann distribution. Thus only a minute fraction of the representative points are outside
the energy minima allowing a small diffusion current between them, so manifesting the non-
equilibrium conditions;

n(θ, φ) =
{

n(θ1)e
− v

kB T [V (θ)−V (θ1)], for θ ∈ (θ1 − ε, θ1 + ε)

n(θ2)e
− v

kB T [V (θ)−V (θ2)], for θ ∈ (θ2 − ε, θ2 + ε).
(72)

The numbers of particles N1 or N2 from the first and the second wells, respectively, are

N1 = 2πn(θ1)e
v

kB T V (θ1) I1, where I1 =
∫ θ1+ε

θ1−ε
e− v

kB T V (θ) sin θ dθ

N2 = 2πn(θ2)e
v

kB T V (θ2) I2, where I2 =
∫ θ2+ε

θ2−ε
e− v

kB T V (θ) sin θ dθ.
(73)

Assuming that the flow between the two minima θ1 and θ2 is quasi-stationary,
approximated by a divergenceless current [89], the total current of particles over the potential
barrier can be written as

I = 2π sin θ J θn . (74)

Rewriting the first equation from (69), one obtains

∂n

∂θ
+ v

kT

∂V mag

∂θ
n = − Iv

2πh′kBT sin θ
(75)

which defines the activation regime. Introducing Im as

Im =
∫ θ2−�ε

θ1+�ε
e

v
kB T V (θ)

sin θ
dθ, (76)

equation (75) yields

I = −Ṅ1 = Ṅ2 = −h′kBT

v Im

(
N2

I2
− N1

I1

)

(77)

which has the form

Ṅ1 = −Ṅ2 = N2

τ2
− N1

τ1
(78)

with

τ1 = I1 Imv

h′kBT

τ2 = I2 Imv

h′kBT
.

(79)

Because of the rapid decrease of the exponential factor with distance from the minima of
V mag, we may in I1, I2, Im replace V mag(θ) by its Taylor’s series about θ1, θ2, θm , respectively,
truncated at the θ2 term, and replace the upper limit of the integrals by ∞. With these
approximations, we find

τ1 = τ01 e
v(V (θm )−V (θ1))

kB T

τ2 = τ02 e
v(V (θm )−V (θ2))

kB T

(80)
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where the waiting times are given by the expressions

τ01 = 2π

h′
[−V ′′(θ1)V

′′(θm)
]− 1

2
sin θ1

sin θm

τ02 = 2π

h′
[−V ′′(θ2)V

′′(θm)
]− 1

2
sin θ2

sin θm
.

(81)

Equation (80) is a formula for a symmetric bistable potential which has minima at θ1,
θ2 = π − θ1 and a maximum at θm = π/2.

For ϕ 
= 0, the potential V mag(θ, 0) has an asymmetric bistable form, and all arguments
leading to equation (80) also apply for an arbitrary ϕ [91]. The general equations are very
similar to equation (80); the only difference in the analytic expression is that instead of the
symmetric angles, θ1, θ2 are now asymmetric.

It has to be emphasized that τ1 and τ2 are the relaxation times related to the first and
second potential barriers (starting from the first or the second minima), and that equation (80)
constitutes the Néel–Brown law for the particular case of the symmetric bistable well.
Interestingly, in all cases [91], the Gilbert damping is reduced to the prefactor of the
exponential, and consequently plays only a negligible role in the activation process.

In many cases, the potential is highly asymmetric, and the Néel–Brown law is written in
the following asymptotic form:

τ = τ0 exp

(
�V0(1 − H/H 0

sw)
α

kT

)

(82)

with three phenomenological parameters α ≈ 3/2, �V0 and H 0
sw [94, 95]. The laws (80)

and (82) are well established experimentally in usual magnetic sub-microstructures. More
surprisingly, they have been also observed in time resolved one-shot measurements under spin
injection with high effective temperature Teff (2000–20 000 K) instead of 300–340 K [2, 25–29]
(see the next section).

3.4.3. Hysteresis loops and one-shot measurements. Let us start from the LLG equation (65).
The first term in the right-hand side describes the precession, relevant at the nanosecond
timescale and below, and the second term in the right-hand side describes the alignment
relaxation. The quasi-static measurements, i.e. the hysteresis loops, are described in a first
approach by considering the alignment term only, without activation processes (i.e. at zero
kelvins). This corresponds to the Stoner–Wohlfarth model if the uniform magnetization
switching mode is assumed [89, 103]. The hysteresis loop is hence described by the condition

�Heff × �M = �0 (83)

or, in other words, the projection of �Heff over the vectors perpendicular to �M is zero:
�Heff · �uθ (θ, φ) = 0
�Heff · �uφ(θ, φ) = 0.

(84)

In the case of the uniaxial magnetic anisotropy, there is only one variable θ , and the quasi-
static conditions reduce to �Heff · �uθ = 0. This equation defines the quasi-static, or reversible,
branches of the hysteresis. The irreversible jump between two branches is given independently
by a supplementary condition [94, 104]. In the case of the Stoner–Wohlfarth model (uniform
rotation at zero kelvins) the condition can be written as d/dθ( �Heff · �uθ ) = 0, and the hysteresis
loop, plotted in figure 7(a), is defined by the equations

�Heff · �uθ = 0
d

dθ

( �Heff · �uθ
)

= 0
(85)

with different values of the applied field.

23



J. Phys.: Condens. Matter 19 (2007) 165213 J-E Wegrowe et al

E

kT

kT

θ
2

initθ
2θ

1θ
2

init

Δϕ Δϕ

Δϕϕ

θ
2
init

θ
2
init

θ
2

θ
1

ΔM jump

ΔM

θ
2

θ
1

ΔM

a) b)

c)

Figure 7. Hysteresis loop and one-shot measurements in the uniaxial anisotropic single magnetic
domain. (a) Hysteresis loop at different angles ϕ of the applied magnetic field. The saturation
(i.e. initial states without excitation in the relaxation protocol: Hy = 0) corresponds to the
magnetization θ init

1 or θ init
2 . (b) Double-well potential after the application of the excitation �ϕ: the

whole potential landscape is modified (the barrier height and the two equilibrium configurations).
(c) Two-level fluctuations measured between the two configurations (the magnetization jumps from
the potential well at θ1 to the potential well at θ2). Right: the Néel–Brown law is verified after
taking statistics over a significant number of jumps, in order to access to the mean relaxation times
τ (θ1) and τ (θ2). Reprinted with permission from [95]. Copyright ©American Physical Society.

The above conditions are equivalently expressed in terms of the first and second derivatives
of the potential energy V mag (equation (71)), instead of the effective field:

∂V mag

∂θ
= 0

∂2V mag

∂θ2
= 0.

(86)

The advantage of the formulation proposed in equation (85) is that it is not necessary to
know the total energy of the system. For example in the case of a ferromagnetic layer close
to an other magnetic layer (this is typically the case for a pillar spin valve structure in which
the second layer plays the role of a spin polarizer: see the next section), a local field due to
multipolar fields is present at the level of the ferromagnet studied [5]. The system of the coupled
layers is very complicated (e.g. the motion is even chaotic under an oscillatory excitation), but
knowledge of the total energy of the coupled system is unnecessary for describing the minor
loops due to the switching layer. Only the local expression for the multipolar fields is necessary.

On the other hand, the second condition that gives the position of the irreversible jump
(e.g. the second equation in (86) in the case of uniform modes) is no longer valid at non-zero
temperature: the hysteresis loop should then be described taking into account the activation
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process (see figures 7(b) and (c)). In a single-domain ferromagnet, only the position of the
irreversible jump (i.e. the switching field Hsw) is modified by the activation process (i.e. by the
temperature, by the width of the observation time window, or equivalently by the velocity of
the sweeping field used to measure the hysteresis loop [105]), but not the rest of the hysteresis
loop. The fluctuations do not perturb the quasi-static configurations (e.g. the reversible part of
the hysteresis), except at the two critical points where the potential barrier is of the same order
as the thermal energy. The reversible part of the hysteresis is not modified by the activation (for
a fixed Ms) as long as anharmonic effects are negligible.

Of course, this analysis cannot be generalized to non-single-domain samples, i.e. beyond
nanoscopic dimensions, because the layer is then an ensemble of sub-systems with a
distribution of anisotropies, defects, etc [106], and the hysteresis loops cannot be separated
between reversible quasi-static states and irreversible jumps [96, 107].

In contrast to the quasi-static experiments, the time resolved one-shot experiments allow
the barrier height—or the amplitude of the thermal fluctuations—to be measured. It is then
possible to complete our knowledge of the potential landscape by exploring the barriers
between two valleys. If the barrier height is above the energy of the lattice kT , the irreversible
jumps occur within a typical time window that can be tuned with the amplitude of the magnetic
field or the temperature. In order to access the mean value of the relaxation times, statistics
should be taken over a significant number of shots. If the exponential relaxation is verified, the
relevant relaxation times can then be extracted. The ratio of the relaxation times τ (θ1)/τ (θ2)

gives the asymmetry of the double well, and each relaxation time gives the corresponding
barrier height. The Néel–Brown law is tested by varying the temperature and the external
magnetic field (figure 7). The whole potential can be rebuilt from these measurements.

Figure 7 shows (a) the hysteresis loop (quasi-static states) obtained from the conditions
of equation (85), and ((b), (c)) how to measure the ferromagnetic potential landscape with the
help of the quasi-static and slow magnetic relaxation measurements (the so-called magnetic
after-effect measurements), performed on a single-magnetic-domain nanostructure [26]. In
the example shown in (c), the angle and amplitude of the magnetic field is set in order to
obtain the two-level fluctuation effect (measurements reported in Wernsdorfer et al [95]). The
principle of the measurements is sketched in figure 7 for a sample with uniaxial anisotropy:
the hysteresis loop describes the succession of equilibrium magnetization configurations as
a function of the magnetic field (the applied field is normalized to the anisotropy field) for
different angles ϕ of the applied field. The angle θ describes the direction of the magnetization.
For a given angle of the field ϕ, the hysteresis is composed of the reversible configurations
and two symmetric irreversible jumps over the potential barrier. The jump occurs from the
last equilibrium (metastable) state given by the angle θ1 to the other branch of the hysteresis,
given by the angle θ2 (figure 7(b)). The two angles are defined equivalently by the conditions
of equation (85) or (86). The amplitude of the jump is easily measured (it is given by the
difference Ms(cos θ2 − cos θ1)), and gives direct access, from the hysteresis loop, to the quasi-
static configurations (i.e. to the position of the potential wells). Changing the field (amplitude
and angle) necessarily changes the equilibrium position and the angles θ1 and θ2. Note that the
case of uniaxial symmetry with ϕ = 0 is the unique pathological case, where the change in the
amplitude of the field does not change the equilibrium magnetic configurations. However,
since this pathological case is unfortunately that used in most calculations for the sake of
simplicity (this was also the case here for the derivation of the Néel–Brown’s law), the fact
that the initial and final quasi-static states are necessarily modified is not pointed out in the
usual descriptions of the effect of spin transfer torque [108]. Inversely, a change observed in
the two equilibrium configurations implies a change of the potential landscape, i.e. a change of
the effective field.
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3.4.4. Quasi-ballistic reversal and non-linear resonance. Finally, it is worth mentioning the
situations in which the equilibrium condition �Heff × �M = �0 is not sufficient to account for the
magnetization reversal. This is the case for a reversal provoked by a pulsed field measured
on the timescale of the nanosecond (i.e. in the non-stationary regime), and in the case of
a stationary process in which the reversal is helped by a high frequency AC field excitation
(anharmonic effects).

In the first case, the relevant time window is shorter than the longitudinal relaxation
timescale τ0, the precession now governs the quasi-ballistic dynamics, and the magnetization
is not thermalized with the lattice. The collective modes measured are those observed
with ferromagnetic resonance; e.g. dynamics of thermal spin waves are observed in GMR
structures. Sub-nanosecond time resolved protocols (averaged measurements) allow very rapid
magnetization reversal to be measured, that involves few rotations of the magnetization around
the effective field before reversal [97–101]. However, we focus our discussion on activation
processes, and the quasi-ballistic dynamics is beyond the scope of the present report.

In the second case, a high frequency AC magnetic field is applied in addition to the
static field: important variations of the switching field are measured [126]. In that case, the
experiments show that the magnetization reversal is affected if the external AC field is in
resonance with the precession (frequency of some few GHz). Provided that the resonance
is reached, the position of the irreversible jump (the switching field) is driven by the AC
field, because the energy of the external wave is absorbed by the magnetic system in the form
of kinetic energy. The condition of reversal are then described by the nanolinear stationary
condition g′Ms ( �M × �Heff) − h′ �M × ( �M × �Heff) = �0. If the resonance is not reached, the
jump is not modified, and the hysteresis loop is not affected. This effect is due to a non-linear
resonance process: the precession angle is large so the trajectories of the magnetization are no
longer confined within the bottom of the potential wells (the harmonic part of the potential),
and at the limit, the trajectories reach the top of the potential barrier: the magnetization reversal
occurs deterministically (quasi-ballistic reversal), without the help of the activation process.

4. Spin transfer

Let us now consider a system composed of a ferromagnet coupled to a heat reservoir, in which
spin injection (with high current density) is performed. In such spin transfer experiments, the
magnetization configurations are measured while injecting the current. Usually the magnetic
configurations are measured with magnetoresistance (GMR, AMR or Hall) properties for
convenience, but micromagnetometry or magneto-optics measurements are also possible [109].

A lot of experimental results have now been reported. The most common ones are obtained
with the measurements of the hysteresis loop as a function of the current amplitude, for a fixed
magnetic field [1–8], or the hysteresis loop as a function of the external field, for different
currents [9–11]. Many other experiments have been performed in the frequency range with AC
currents [12–15, 28, 30–33], with resonance frequencies (beyond GHz) measured as a function
of the current amplitude and the applied field. However, since we are interested in the difference
between stochastic and deterministic behaviour, we will focus our attention in the following on
the one-shot measurements that preserve the stochastic part of the signal [25–29].

Figure 8 shows single-shot measurements with two-level fluctuations in time intervals
of milliseconds (a) [25] and microseconds (b) [27], obtained by different groups with GMR
measurements on trilayer nanopillars. Figure 8(c) shows the anisotropic magnetoresistance of
a single contacted Ni nanowire. A zoom is performed on the irreversible jumps measured in the
hysteresis loop [29]. In the last case, each point in the zoom (right part of figure 8(c)) is a 6 μs
pulse. The hysteresis is obtained with current varying from 2.4 × 107 to 1.5 × 107 A cm−2 (the
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Figure 8. One-shot measurements under spin injection. (a) Two-level fluctuations measured with
GMR in a trilayer system (permalloy/Cu/permalloy, from [25]). (b) Two-level fluctuations measured
with GMR in a trilayer structure (Co/Cu/Co, from [27]). (c) Hysteresis loop measured with AMR
(left) and zoom around the irreversible jump measured under spin injection (6 μs pulse per point)
(details reported in [29]). The hysteresis measured with AMR shows the succession of the equilib-
rium configurations. In all cases, the initial and final states (the equilibrium states) are those mea-
sured without current injection (θ = θ init). Equilibrium configurations are not modified by the spin
injection. Reprinted with permission from [25] and [27]. Copyright ©American Physical Society.

position of the jump without current injected is shown by the arrow at Hsw). In all cases,
the metastable states (described with the angles θ1 and θ2 defined in the previous section)
coincide with θ init

1 and θ init
2 measured before the application of the current. Everything happens

as if the potential landscape were not modified! In contrast, the action of the current is huge
(some fraction of an eV to few eV, i.e. from 25% to more than 100% of the anisotropy energy
of the ferromagnet), and is observed only for the irreversible jump. By acting on the jump
and not on the potential landscape, the effect of the current seems to mimic the action of a
temperature.

This is one of the most striking differences observed when comparing to the corresponding
measurements without spin injection. The point discussed in the following section is to
establish whether this observation can be described in the framework of a current dependent
deterministic term added to the LLG equation. The following subsection investigates the
general case of a non-deterministic contribution in terms of open systems.

4.1. Generalized Landau–Lifshitz–Gilbert equation

The system described above has been investigated theoretically on the basis of some
different postulates: the one most commonly used is Slonczewski’s spin torque
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expression [34, 35, 110–119], but other concepts are also being introduced, like that of radiation
damping [120], and other hypotheses related to spin relaxation (see e.g. [78, 121, 122]).
However, whatever the mechanism invoked, the result can be described in a very general
way, by adding current dependent terms into the LLG equation. The most general case of a
deterministic contribution is investigated in the present subsection. The case of Slonczewski’s
spin torque is studied in this context.

Let us imagine a physical system composed of a ferromagnet coupled to an external source
of energy. A deterministic coupling is generally due to different forms of external fields, so the
energy transferred is in general not reduced to a simple potential energy term (e.g., in the case of
electromagnetic fields, a potential vector should be introduced). The question to be addressed
is the following: what phenomenological equation describes the dynamics of a ferromagnetic
single domain coupled to any kind of field, or in other words, in any kind of deterministic
perturbation? The answer is found very simply, by following the basic idea used by Landau
and Lifshitz while defining the LL equation. Provided the modulus of the magnetization is
conserved, the time variation of the magnetization d �M/dt is written in the orthonormal basis
composed of the two vectors ( �M × �H ) and ( �M ×( �M × �H)). In order to generalize this equation
to any deterministic contribution (while maintaining the uniformity of the magnetization), it is
sufficient to add a vector �X to the Gilbert equation:

d �M
dt

= 
 �M ×
(

�H − η
d �M
dt

)

+ �X . (87)

In order to obtain the generalized Landau–Lifshitz form, the time variation of the
magnetization d �M/dt should be expressed in the orthogonal basis {{ �M}, { �M × �H}, { �M ×( �M ×
�H )}}. After cross-multiplying vectorially by �M on both sides of equation (87), and using the

double-vector-product formula ( �A × ( �B × �C) = ( �A · �C) �B − ( �A · �B) �C), the generalized LL
equation is obtained:

d �M
dt

= g′Ms �M ×
( �H + η �X

)
− h′ �M ×

[ �M ×
( �H − η

α2
�X
)]

− g′


Ms

( �M · �X
) �M (88)

where g′, h′ and α are defined in equations (67) and (68). The major change that is observed,
with respect to the usual case without an external contribution, is of course that the last term
does not conserve the modulus of the magnetization. However, beyond this trivial observation,
the striking result is that the effective field does not have the same intensity and sign for the
precession term and for the longitudinal relaxation term. It is then necessary to introduce
the collinear effective field experienced during the precession process and the effective field
experienced during the alignment process. The two corrections to H are simply related by the
coefficient −α2. This is due to the fact that the kinetic energy provided by the external system
is injected into the precession term. Of course, as expected in this open system, the effective
field cannot be derived from a single potential energy term.

4.2. Slonczewski’s spin torque

Let us now be less general, and restrict the interaction with the external source to a contribution
that preserves the modulus of the magnetization. Instead of �X we introduce now a contribution
of the form c(I ) �M × ( �M × �p)/M2

s , where �p is a unit vector. Note that this form is that
proposed by Slonczewski in 1996 [35], on the basis of considerations concerning microscopic
spin torque conservation at the interface of a spin valve during spin injection. The vector �p
represents then the polarization of the current. These considerations gave rise to a new and
fascinating investigation field concerning the different microscopic mechanisms occurring at
the interface.
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From the phenomenological point of view, the consequence of the double-torque form of
�X is a reduction of the general Gilbert equation to the (still rather general) form

d �M
dt

= γ �M ×
(

�H − η
d �M
dt

)

+ c(I )

M2
s

�M ×
( �M × �p

)
(89)

where c(I ) is proportional to the current I , and �X is the magnetization of the polarization layer
(in a three-layer-configuration device).

In the Landau–Lifshitz form, the above equation is equivalent to

d �M
dt

= g′ �M ×
( �H + c(I )η �p

)
− h′ �M ×

[
�M ×

(
�H − η

c(I )

α2
�p
)]

(90)

so we are left with two effective fields:

�H pre
eff (I ) = �H + ηc(I ) �p

�H al
eff(I ) = �H − ηc(I )

α2
�p (91)

where �H pre
eff is the field experienced during the precession (associated with the kinetic energy)

and �H al
eff is the field experienced during the alignment process. The following relation that links

the two effective fields is the criterion for the validity of the spin torque hypothesis:

�H al
eff(I )− H = −α2

( �H pre
eff (I )− H

)
. (92)

This criterion (92) is one of the basic predictions to be fulfilled in order to show
experimentally the validity of the hypothesis of a deterministic contribution of the form
�X = c(I )· �M ×( �M × �p)/M2

s , added to the Gilbert equation. In the case of linear resonance (the
so-called ‘reversible’ part in the dV/dI hysteresis loop), the resonance field is an increasing
function of the current amplitude, while in the case of irreversible jumps, the switching field is
in contrast a decreasing function of the current.

However, it is necessary to measure separately the precession modes at GHz frequency
(stationary dynamical states) and the quasi-static behaviour under current injection, in order to
test the criterion (92). If explored close enough to the equilibrium states or more precisely near
quasi-static states described with the hysteresis loop (i.e. in the potential valleys), the resonance
is the ferromagnetic resonance (FMR), and it is well described by the first term of the LLG
equation. If the precession angle is more important, with the result that the non-harmonic part
of the potential well is explored, the resulting stationary states involve both terms of the LLG
equation, and correspond to non-linear resonance experiments [126].

4.2.1. Quasi-static spin torque. For measurement time greatly beyond the nanosecond
timescale, the precession is neglected (see the discussion below concerning the case of non-
linear resonance), and the quasi-static states are defined by the static equilibrium (first equation
of (85)):

(
�H − ηc(I )

α2
�p
)

· �uθ = 0. (93)

The system being an open system, the potential energy and kinetic energy of the
ferromagnet are no longer defined by a unique energy, a function of the state variables: the
energy flux and energy density should be defined with a source term (see below). However,
the hysteresis loop, i.e. the succession of quasi-static states for different values of the applied
magnetic field and current I , is still given by the condition of equations (85).
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(a) (b)

Figure 9. Hysteresis loop obtained with the spin torque expression (93) of the text. The field is
normalized to the anisotropy field (h = H Ms

2K ) and applied at an angle of ϕ = 45◦. The polarization
�p of the current is inside the plane of the layer at an angle of β = 10◦ and the corresponding
normalized field is h I = ηc(I )

α2
Ms
2K . (a) Hysteresis plotted as function of the applied field for different

values of the current. (b) Hysteresis plotted as a function of the current for different values of the
applied field.

The effect of the current on the hysteresis loop would then be analogous to that of a local
field, like a dipole field. The effect of the spin torque is shown in figure 9 for a vector �p in the
plane of the layer with an angle of 10◦ with respect to the anisotropy axis of the ferromagnet
(no qualitative differences with other angles): the reversible part of the hysteresis is strongly
modified while changing the current. The hysteresis as a function of the current is shown in
figure 9(b) for different values of the applied field.

Once again, the reversible effects due to the current on the quasi-static states have not
been evidenced experimentally, in contradiction with the prediction from the hypothesis of
spin torque.

4.2.2. Precessional spin torque. The arguments developed above are based on an analysis
performed neglecting the precession terms. If we assume that the precession is maintained in
a stationary regime during the one-shot measurements, the magnetization is then driven by the
precession [108], like for non-linear resonance, but without any HF excitations (in contrast to
the experiments in which the current is injected with GHz frequencies). The trace in figure 6
should then be interpreted as deterministic trajectories observed in the phase space composed
of two attractors (the two potential valleys, or equilibrium states) and the barrier. In this
context, the TLF signal indicates that the magnetization is stuck very close to the attractors,
and there is no intermediate trajectory (i.e. large precession angles, averaged over the time, do
not exist). The precession angle is always small, except during a very small fraction of time
during the jump (the time resolution in reference [28, 29] is of the order of a few nanoseconds).
Furthermore, and as already mentioned, the equilibrium states (the attractors) are not modified
by the current. Within this context, the precession induces intermittency, i.e. a highly specific
chaotic behaviour in which the time spent out of the attractors is negligible. Such behaviour is
discussed in detail elsewhere, in terms of spin torque hypothesis [124, 125]. This interpretation
is however avoided here because the measured traces (figure 6) mimic exactly the full stochastic
process composed of the two-level fluctuation (that follows the Néel–Brown activation law),
and the same white noise for the two quasi-static states [123]. In the case of precession, the
precession angle would depend on the current, so the two stationary states should also depend
on the current. This is not observed in the TLF signal, or in the hysteresis loops measured
as a function of the current amplitude. Furthermore the observation of identical noise in the
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two states is in contradiction with published simulations performed with the hypothesis of spin
transfer torque [124, 125].

According to the above analysis of the consequences of the spin torque hypothesis, we
conclude that another hypothesis should be invoked in order to account for the observed signal,
in the activation regime. In the following, we focus our attention on an alternative approach of
the effect of the current, namely the dissipative, or irreversible, spin transfer effect, for which
the spin relaxation is a source term for the magnetization.

4.3. Open ferromagnetic systems

According to the description of electronic relaxations given in section 2, it is natural to
account for the presence of current dependent terms in the LLG equation exclusively due to
this relaxation, i.e. without the need to introduce a deterministic term �X into the dynamical
equation.

In order to describe the ferromagnetic layer coupled to the spin dependent electric sub-
system in terms of open systems, we rewrite the conservation laws of the ferromagnet
(equation (55)) adding the source term �̇ due to spin transfer (see figure 10):

∂nferro

∂ t
= −div( �Jn)+ �̇(Je)

∂nelec

∂ t
= −div( �δ J)− �̇(Je).

(94)

According to the first law of thermodynamics, the contribution due to the electronic
relaxation �̇ should be taken into account in the entropy production of the ferromagnet.
Inserting equation (94) into (51), the entropy production is

�Js = 1

T
�Je − μ̃

T
�Jn

I = �Je · �grad

(
1

T

)

− �Jn · �grad

(
μ̃

T

)

+ �μ(Je)

T
�̇(Je)

(95)

where �μ(Je) = μelec − μ̃ (e.g. �μ = μs↓ − μd↓). The Onsager transport equations are
modified accordingly. The modification due to the contribution of the electronic relaxation is
taken into account by a third relaxation term (we still assume T constant):

J θn = −Lθθ
∂μ̃

∂θ
− Lθφ

1

sin θ

∂μ̃

∂φ
+ Lθch �μ

J φn = −Lφθ
∂μ̃

∂θ
− Lφφ

1

sin θ

∂μ̃

∂φ
+ Lφch�μ

�̇(Je) = Lchθ
∂μ̃

∂θ
+ Lchφ

1

sin θ

∂μ̃

∂φ
+ L �μ

(96)

where �μ (a function of the current density Je described in the first part of this report), is
defined as the chemical affinity of the corresponding reaction, or equivalently, is defined as
the pumping force associated with the flux �̇ of spins transferred between the spin polarized
electric system and the ferromagnet. In other words,�μ is the force responsible for irreversible
spin transfer. The Onsager cross-coefficients Lθch (and Lchθ ) and Lφch (and Lφch) have been
introduced for the sake of generality in order to account for the dependence of the relaxation
mechanisms (e.g. spin accumulation) on the magnetic states or inversely. These coupling terms
in the equations (96) are responsible for second-order effects, that will not be discussed in the
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present report: the cross-terms proportional to the transport coefficients Lθch, Lchθ , Lφch and
Lφch will be neglected in the following;

J θn = −Lθθ
∂μ̃

∂θ
− Lθφ

1

sin θ

∂μ̃

∂φ

J φn = −Lφθ
∂μ̃

∂θ
− Lφφ

1

sin θ

∂μ̃

∂φ

�̇(Je) = L �μ(Je).

(97)

Inserting in the continuity equation and integrating over the whole ferromagnetic layer,

∂n(θ,φ,t)
∂ t

= −div �Jn +
∫ B

A
�̇(z) dz. (98)

The Fokker–Planck equation, equation (56), can be rewritten as

∂nferro

∂ t
= ∂n0

∂ t
+
∫ B

A
L �μ(z) dz = 0 (99)

where the first term in the right-hand side ∂n0
∂ t leads to the standard rotational Fokker–Planck

equation (defined by the second equation in equations (62)), and the second term is the
contribution coming from the electronic relaxation. This equation is the main result defining the
irreversible spin transfer effect for an open system. Equation (99) will not be solved here. The
aim of the following developments is to define negative damping and effective temperature.

The dynamic equation is obtained in the same way as in the previous section, by writing
the flux of representative points on the unit sphere. The relation �J = n d�ur/dt , equation (63),
is not modified by adding the source term (the magnetic flux is not modified because the cross-
coefficients are neglected in equation (97)). However, the density n(I ) and diffusion ∇n(I ) are

now current dependent. This can be described in terms of the fluctuating field �̃H eff(I ), like in
equations (64) and (66). As a consequence, the form of the LLG equation is not modified with
spin transfer.

Since the effect of the environment conserves the modulus of the magnetization, i.e. �u ·
d�u/dt = 0 [132], the contribution of d�u

dt

elec
reduces to the two damping factors, parallel to

�u × ∇V mag and parallel to �u × (�u × �∇V mag). After averaging, this necessarily leads to the
introduction of two parameters α1 and α2 such that

d�u
dt

= −α1 �u ×
( �∇V mag

)
+ α2 �u ×

[
�u ×

( �∇V mag
)]

(100)

where the new coefficients α1 and α2 account for the modification of the magnetic transport
coefficients g′ and h′ due to spin transfer

∫ B
A L · �μ(z) dz, and can be thought of as negative

damping or positive damping, depending on whether the spin transfer integrated over the whole
layer with the two junctions is transferred from the electric system to the magnetic system
(negative damping) or inversely (positive damping). In other words, it depends on the balance
of spin accumulation at the two interfaces of the ferromagnetic layer. Note that as long as
the damping coefficients are not explicitly defined, the validity of the argument used above
(Callen’s argument [132]) is not restricted to the relaxation and spin accumulation mechanisms
described in the first sections of this work, but is much more general. Beyond Callen’s
argument proposed above, the proper derivation of the reduction from equation (99) to (100)
(see e.g. [46]) is still to be performed on the basis of a projection operator formalism [128–131].

4.4. Effective thermostat

The Néel–Brown activation laws describe out-of-equilibrium spin systems (∂μ̃ 
= 0), and are
valid for high enough potential barriers kT � vV mag, or long timescales�t/τ0 � 1, where�t
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is the measurement time window, and τ0 is the relaxation timescale that describes the coupling
to the lattice. If the volume v tends to zero, the energy barrier decreases down to a value such
that vV mag � kT ln(�t/τ0), and the magnetization is at ‘equilibrium’ with the lattice for the
measurement time window �t . The system is not now metastable but superparamagnetic.
The equilibrium imposes the condition ∂μ̃ = 0, and the statistical distribution is the
Maxwell–Boltzmann distribution n = Nt exp(−vV mag/kT ). The magnetization behaves like
a paramagnetic spin, with the ferromagnetic order parameter �M instead of the spin �s. In the
case of 3d metallic ferromagnetic nanostructures (Co,Ni,Fe . . .) of sizes typically around 5–
10 nm radius, the system is superparamagnetic at room temperature for usual timescales of
magnetometric measurements (above 10−4 s). The system is nevertheless ferromagnetic and
follows the Néel–Brown laws if the measurements are performed in a shorter time window �t
(from microseconds to nanoseconds in the case of 10 nm3 particles invoked above).

As mentioned in the previous section, if the relevant time window is shorter than the
typical ferromagnetic relaxation timescale τ0 (�t � τ0), the precession now governs the quasi-
ballistic dynamics, which is qualitatively different (because it is not driven by the fluctuations).
In the linear regime, the collective modes measured are that observed with ferromagnetic
resonance; e.g. dynamics of thermal spin waves are observed in GMR structures [97–101]. It
is no longer activated, whatever the potential barrier and the volume v, and the thermalization
process vanishes at short timescales (the ‘quasi-ballistic magnetization reversal’ regime [100]).
The temperature of the system (if any [133]) is not necessarily the temperature of the lattice
Teff 
= T : the system is decoupled from the heat bath. A similar situation justified the
introduction of the concept of spin temperature Ts in the early 1950s with the first spin
resonance experiments [134]. Note that if the system is also isolated from other sub-systems
at comparable timescales, has an upper bound, and if the populations (up and down) can
be inverted (like in nuclear spin systems), the spin temperature of the system can even be
negative [135, 136] (but the spin temperature is usually positive and higher than the lattice
temperature [136]).

In the situation of interest, with spin polarized currents in 3d metallic nanostructures, the
ferromagnetic order parameter is coupled to the lattice through the polarization of the electronic
degrees of freedom [127, 137, 138]. Without being coupled to the magnetization (e.g. in the
non-magnetic side of a junction), the spin accumulation sub-system relaxes toward equilibrium
with a relaxation time τsf of some picoseconds (as described in the first section with the two-
channel model). This relaxation time is shorter than the thermalization of the magnetization
with the lattice τ0 (nanoseconds). On the other hand, the coupling with the ferromagnetic sub-
systems corresponds to a relaxation time τsd (the period between the electronic relaxation time
τe and τsf) shorter than τ0: as a consequence, this relaxation ‘thermalizes’ the ferromagnetic
order parameter with the spin accumulation sub-system, which takes the role of the heat bath
in place of the lattice. This picture is that schematized in figure 1 in the first section.

In the activation regime, it is possible to assume that the spin accumulation sub-system
is a reservoir of energy, and that the ferromagnetic order parameter is thermalized with it (see
figure 1). Because the spin accumulation sub-system is not thermalized with the lattice, the
zeroth law of thermodynamics is not valid [133], and it is possible to identify it as a thermostat
at temperature Teff in equilibrium with the ferromagnetic system.

The equilibrium condition imposes that I = 0 [45]. The entropy production I of the
spin dependent electric sub-system was calculated in section 2. With the temperature Teff

corresponding to the effective equilibrium temperature, the chemical potential can be written
as [43] �μ̃eff = �μeff + kTeff ln(nα/nγ ).

Teff · I =
(

−∂�μ̃
eff

∂z
+ 2ε�μ̃eff

)

δ J +�μ̃eff�̇ = 0 (101)
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Figure 10. Under spin injection, the ferromagnetic layer is an open system coupled to the spin
accumulation reservoir. The variation of the density of magnetic moments (oriented at a given
direction in the unit sphere) is given by the divergence of the magnetic flux added to the correction
due to the relaxation rate �̇ of spins relaxing from one system to the other at the interfaces.

where the Joule heating contribution − ∂μ0

∂z J0 has been removed because it does not contribute
to the magnetic system and is coupled to the lattice (the whole analysis should also include the
Peltier effects: energy can also be extracted from the lattice to the magnetic system).

The entropy production vanishes for the following sufficient condition:

�μ̃eff = 0. (102)

The condition of equation (102) leads to the expression for the equilibrium temperature Teff:

kTeff = − �μ

ln(nα/nγ )
≈ −2�μ

n0

δn
(103)

where the inversion of population implies that δn � 0. This equation is simply the equilibrium
Curie–Weiss law that accounts for the paramagnetic behaviour of the spin accumulation
gμB δn, i.e. the first-order approximation of the averaging over the Boltzmann distribution
at temperature Teff (δn is the s–d spin accumulation that would be measured with a lattice
temperature Teff). The evaluation of δn would necessitate the non-equilibrium distribution at
temperature T being calculated. This task is beyond the scope of the present review. However,
according to the evaluation performed below, an energy kTeff ≈ 1 eV can be expected from
calculating the ferromagnetic energy for a current of 1 mA due to the spin transfer in the internal
field of 1 T for the ferromagnet.

A fundamental consequence of the existence of the effective temperature is that the
solution of the stochastic equation for the magnetization is known, and is given by the standard
activation equation (75) with the effective temperature Teff instead of the lattice temperature T :

∂N

∂θ
+ 1

kTeff

∂V

∂θ
N = Ieff

2k ′
effπ sin(θ)

(104)

where Ieff is calculated with the Boltzmann distribution with the ferromagnetic energy
exp(V (θ)/kTeff). Assuming a constant effective temperature Teff(θ) ≈ Teff, the equation is
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Figure 11. Observation of the Néel–Brown activation due to current injection in a Co/Cu/Co
trilayer ((a), (b)) and in a Ni nanowire ((c), (d)). (a) Ratio of the two relaxation times (TLF) and
(c) relaxation time as a function of the applied field for different currents fitted with the Néel–Brown
formula and the effective barrier height as the fitting parameter. ((b), (d)) Variation of the effective
barrier height in kelvins. In the case of the two-level fluctuations, the barrier is measured for the
symmetric relaxation times (b) (i.e. for different applied fields). The effects of the fluctuations are
sketched in the insets (dashed lines). Reprinted with permission from [26] and Ph Guittienne et al
[29]. Copyright ©American Physical Society.

formally identical to equation (75), so the Néel–Brown activation formula is recovered with
Teff instead of T :

τ (θ1) = τ01 e
(
�V1
kTeff

)

τ (θ2) = τ02 e
(
�V2
kTeff

) (105)

where τ01 and τ02 contain the k ′
eff dependence. This behaviour is experimentally

observed [2, 25–28]. Figure 11 shows the typical Néel–Brown activation observed with the
sample shown in figures 8(b) and (c). The fit of the mean relaxation time as a function of the
applied field and the current amplitude injected in the device is performed with the Néel–Brown
formula with the effective barrier height as the fitting parameter (figures 11(a) and (c)). The
effective barrier height as a function of the current is presented in figures 11(c) and (d).

Assuming that the mechanism responsible for Teff is the spin accumulation occurring at the
interface composed of anti-aligned ferromagnets, the voltage drop due to spin accumulation is
approximately equal to �μ (see equation (18)):

kTeff ≈ − �Rsa I

ln(nα/nγ )
∝ �Rsa I

2
(106)
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with −ln(nα/nγ ) � 1. The proportionality of kTeff and Rsa was observed by different groups
in recent experimental investigations [140, 141] (with DC measurements, the parameter is the
‘critical current’ Ic ∝ T −1

eff as shown in figure 11(d)).
How do we estimate the magnetic energy of the spin accumulation system in usual

experimental situations, where a current density of some few mA is injected in the
nanostructure [1, 2, 4, 9, 25–29]? This current corresponds to some 1016 spin s−1 flowing
through the interface. If one assumes that 20% (polarization of the current) of the spins are
maintained out of equilibrium within a typical relaxation time τsf of 10−11 s, we are left with
about 2 × 104 spins that define the magnetization of the spin accumulation sub-system in the
volume defined by the corresponding diffusion length. An effect of the electric spin relaxation
on the ferromagnetic order parameter should consequently be expected for a nanostructured
ferromagnetic system that is only ten to a hundred times larger. In an internal field of
Hint = 1 T, this energy E = 104μB Hint is of the order of 1 eV (beyond the Curie temperature)
in accordance with activation experiments performed on various systems [2, 25–29]. Without
current injection, the magnetic order parameter is at room temperature and, consequently, the
hot sub-system is the spin accumulation system.

5. Conclusion

A unified thermokinetics approach involving both spin dependent charge carriers and
ferromagnetic Brownian motion has been presented in the context of open systems. The spin
dependent electronic relaxation is then introduced as a source term in the conservation equation
for the magnetic moment. This leads to the description of the effect of spin injection induced
magnetization switching, or irreversible spin transfer in an open ferromagnetic layer.

The description of the spin accumulated charge carriers is based on the two-conduction-
channel approximation, generalized to both intraband and interband relaxation. The application
of the first and second laws of thermodynamics, together with the conservation laws, leads to the
spin dependent transport equations. The relevant Onsager transport coefficients are introduced
and related to the typical electronic relaxation times. The effect of charge conservation and
screening is also taken into account.

On the other hand, the ferromagnetic order parameter is described on an equal footing by
introducing the conservation laws and the relevant chemical potential, with deterministic terms
accounting for the effective field, and dissipative terms accounting for the coupling to a relevant
heat bath. The corresponding Onsager transport coefficients are defined with the second law of
thermodynamics, and refined with the help of the Onsager reciprocal relations. The rotational
Fokker–Planck equation and the Landau–Lifshitz–Gilbert (LLG) equation are then derived
within the thermokinetic theory. The Onsager coefficients are related to the typical timescales
of the ferromagnetic relaxation (τ0). In the activation regime, the Néel–Brown activation law is
deduced.

In the framework of this description, the generalization of both the Fokker–Planck equation
and the LLG equation together with the contribution of spin accumulation is straightforward in
terms of the flux of representative points in the magnetization sphere. The negative damping
appears naturally for describing the exchange of spins from the electric sub-system to the
magnetic sub-system, described as a coupling to an environment.

Furthermore, the discussion concerning the different relaxation times shows that the spin
polarized current is not thermalized to the lattice in the stationary regime, but is thermalized
with the spin accumulation sub-system. The argument is that on one hand the relaxation toward
equilibrium of the spin accumulation system (described with τsf: some tens to hundreds of
picoseconds) is shorter than the thermalization of the ferromagnetic system (described with τ0:
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nanoseconds), and on the other hand, the coupling between the ferromagnetic order parameter
and the spin accumulation sub-system (τsd) is smaller than or equal to τsf.

An effective temperature is then derived in the activation regime through the entropy
production, and this leads to the derivation of an effective Néel–Brown relaxation process due
to current injection, that is experimentally observed.
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Appendix. Microscopic approach and thermokinetic coefficients

A.1. Relation between L and the electronic relaxation times

Let us consider a simple interface between two metals. Far from the interface, Ohm’s law is
recovered: the chemical potentials of the channels are identical and the electric distribution is
that of equilibrium nα0 and nγ 0. In the following, we assume that the charge transfer between
the two channels can be described with the following relation:

f�nα(x)+ g�nγ (x) = 0. (A.1)

The case f = g = 1 describes the local electrical neutrality. We have

�nα(x) = (μch,α − μ0)Nα(EF)

�nγ (x) = (μch,γ − μ0)Nγ (EF)
(A.2)

where μ0 is the chemical potential in the absence of charge transfer and μch,α and μch,γ are the
purely chemical potentials of the channels (without transfer μch,α = μch,γ = μ0); Nα,γ (EF) is
the density of states at the Fermi level. The separation between the electric potential and the
purely chemical potential can be written as

μα = μch,α + eV

μγ = μch,γ + eV
(A.3)

where V is the local electric potential.
Relation (A.1) gives

(μch,α − μ0) f Nα(EF)+ (μch,γ − μ0)gNγ (EF) = 0. (A.4)

Note that the expressions for �nα,γ come from the fact that at zero kelvins,

nα(μα) =
∫

Nα(E) f (E) dE =
∫ μch,α

−∞
Nα(E) f (E) dE

nγ (μγ ) =
∫

Nγ (E) f (E) dE =
∫ μch,γ

−∞
Nγ (E) f (E) dE .

(A.5)
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From these relations we deduce
{
�nα = Nα(EF) δμch,α

�nγ = Nγ (EF) δμch,γ = − f
g�nα

⇒

⎧
⎪⎨

⎪⎩

�nα = gNα(EF)Nγ (EF)

f Nα(EF)+ gNγ (EF)
δμch,α

�nγ = − f Nα(EF)Nγ (EF)

f Nα(EF)+ gNγ (EF)
δμch,α

(A.6)

where δμαγ = μch,αγ − μ0.
Introducing the global transfer rate Tα→γ (Tγ→α) of the channel α to γ (γ to α), the charge

conservation between the two channels can be written as (e < 0)

∂nα(x)

∂ t
= −1

e

∂ Jα(x)

∂x
− Tα→γ (nα(x), nγ (x))+ Tγ→α(nα(x), nγ (x))

∂nγ (x)

∂ t
= −1

e

∂ Jγ (x)

∂x
+ Tα→γ (nα(x), nγ (x))− Tγ→α(nα(x), nγ (x))

(A.7)

which leads, in the stationary regime ∂nα,γ (x)
∂ t = 0, to the following relations:

∂ Jα(x)

∂x
= −eTα→γ (nα(x), nγ (x))+ eTγ→α(nα(x), nγ (x))

∂ Jγ (x)

∂x
= +eTα→γ (nα(x), nγ (x))− eTγ→α(nα(x), nγ (x)).

(A.8)

The Taylor expansion to leading order of the transfer rates Tα→γ and Tγ→α , around
equilibrium gives

∂ Jα(x)

∂x
= −eTα→γ (n

0
α, n0

γ )− e
∂Tα→γ

∂nα
�nα − e

∂Tα→γ

∂nγ
�nγ

+ eTγ→α(n
0
α, n0

γ )+ e
∂Tγ→α

∂nα
�nα + e

∂Tγ→α

∂nγ
�nγ (A.9)

∂ Jγ (x)

∂x
= −∂ Jα(x)

∂x
.

At equilibrium, the current of each channel is conserved, so

−eTα→γ (n
0
α, n0

γ )+ eTγ→α(n
0
α, n0

γ ) = 0. (A.10)

Defining the electronic relaxation times τα→γ , τγ→α , such that

1

τα→γ

= ∂(Tα→γ − Tγ→α)

∂nα (n0
α,n

0
γ )

1

τγ→α

= ∂(Tγ→α − Tα→γ )

∂nγ (n0
α,n

0
γ )

(A.11)

we have
⎧
⎨

⎩

∂ Jα(x)
∂x = −e �nα

τα→γ
+ e

�nγ
τγ→α

∂ Jγ (x)
∂x = −∂ Jα(x)

∂x

(A.12)

⇒

⎧
⎪⎨

⎪⎩

∂ Jα(x)
∂x = −e

Nα(EF)Nγ (EF)

f Nα(EF)+ gNγ (EF)

(
g

τα→γ
+ f
τγ→α

) (
μch,α − μch,γ

)

∂ Jγ (x)
∂x = −∂ Jα(x)

∂x .

(A.13)

The above equations can be rewritten in the following form:

∂ Jα(x)

∂x
= −L

(
μch,α − μch,γ

) = −L
(
μα − μγ

)

∂ Jγ (x)

∂x
= +L

(
μch,α − μch,γ

) = +L
(
μα − μγ

) (A.14)
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where the Onsager transport coefficient L is related to the electronic relaxation times by the
following relation:

L = e
Nα(EF)Nγ (EF)

f Nα(EF)+ gNγ (EF)

(
g

τα→γ
+ f
τγ→α

)

The form of equation (A.14) is that of (9) deduced from the thermokinetic approach
in section 1, where the coefficient L is the Onsager coefficient defined in the third of
equations (11).

A.2. Determination of f and g

We have, for the stationary regime,

∂(Jα(x)− Jγ (x))

∂x
= −2L(μα − μγ ). (A.15)

Furthermore, the local Ohm’s law applied to each channel leads to the following equations:

⎧
⎨

⎩

Jα = −σαe ∂μα(x)
∂x

Jγ = −σγe
∂μγ (x)
∂x

⇒

⎧
⎪⎨

⎪⎩

∂ Jα(x)
∂x = −σαe ∂2μα(x)

∂x2

∂ Jγ (x)
∂x = −σγe

∂2μγ (x)
∂x2

(A.16)

where we assume that the conductivities are constant.
From (A.14) and (A.16), we get

⎧
⎪⎨

⎪⎩

∂2μα(x)
∂x2 = eL

σα
(μα − μγ )

∂2μγ (x)
∂x2 = −eL

σγ
(μα − μγ )

⇒ ∂2(μα − μγ )

∂x2
= eL

(
1

σα
+ 1

σγ

)

(μα − μγ ) (A.17)

which leads to the well known diffusion equation for the chemical potential that describes the
spin accumulation process:

∂2�μ

∂x2
= eL

(
1

σα
+ 1

σγ

)

�μ (A.18)

from which the spin diffusion length lsf is deduced:

1

l2
sf

= eL

(
1

σα
+ 1

σγ

)

. (A.19)

From equation (A.17) we have the differential equations

∂2μα(x)

∂x2
= eL

σα
�μ = σγ

σt

∂2�μ

∂x2

∂2μγ (x)

∂x2
= −eL

σγ
�μ = −σα

σt

∂2�μ

∂x2
.

(A.20)

A.3. Charge distribution and screening

Separating the electric contribution from the chemical contribution, the electrochemical
potential can be written as

μα,γ = μch,α,γ + eV , (A.21)

39



J. Phys.: Condens. Matter 19 (2007) 165213 J-E Wegrowe et al

so
⎧
⎪⎨

⎪⎩

∂2μα(x)
∂x2 = ∂2μch,α(x)

∂x2 + e ∂
2V (x)
∂x2

∂2μγ (x)
∂x2 = ∂2μch,γ (x)

∂x2 + e ∂
2V (x)
∂x2

⇒

⎧
⎪⎨

⎪⎩

∂2μch,α(x)
∂x2 = σγ

σt

∂2�μ

∂x2 + e2�nα +�nγ
ε

∂2μch,γ (x)
∂x2 = −σασt

∂2�μ

∂x2 + e2�nα +�nγ
ε

(A.22)

where the Poisson equation has been introduced:

−∂
2V (x)

∂x2
= e

�nα +�nγ
ε

. (A.23)

The equations can be rewritten as

∂2δμch,α(x)

∂x2
− e2 Nαδμch,α + Nγ δμch,γ

ε
= σγ

σt

�μ

l2
sf

∂2δμch,γ (x)

∂x2
− e2 Nαδμch,α + Nγ δμch,γ

ε
= −σα

σt

�μ

l2
sf

.

(A.24)

These relations with

μα − μγ = μch,α − μch,γ = δμch,α − δμch,γ (A.25)

lead to

∂2�μch,α(x)

∂x2
− �μch,α

l2
= �μ

(
σγ

σtl2
sf

− e2 Nγ
ε

)

∂2�μch,γ (x)

∂x2
− �μch,γ

l2
= �μ

(

− σα

σtl2
sf

+ e2 Nα
ε

) (A.26)

where we have introduced the screening length:

1

l2
= e2 Nα + Nγ

ε
. (A.27)

The solution of the equation is composed of a solution of the equation with zero right-hand
side (homogeneous solution) and a particular solution.

(1) Solution for �μch,α:
homogeneous solution:

�μ
hmg
ch,α = A exp

( x

l

)
+ B exp

(
− x

l

)
; (A.28)

particular solution:

�μ
part
ch,α = pα�μ

⇒ pα
�μ

l2
sf

− �μ

l2
=
(
σγ

σtl2
sf

− e2 Nγ
ε

)

�μ (A.29)

⇒ pα =
σγ

σtl2
sf

− e2 Nγ
ε

1
l2
sf

− 1
l2

. (A.30)

(2) Solution for �μch,γ :
homogeneous solution:

�μ
hmg
ch,γ = A′ exp

( x

l

)
+ B ′ exp

(
− x

l

)
; (A.31)
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particular solution:

�μ
part
ch,γ = pγ�μ

⇒ pγ
�μ

l2
sf

− �μ

l2
=
(−σα
σtl2

sf

+ e2 Nα
ε

)

�μ (A.32)

⇒ pγ =
− σα
σtl2

sf
+ e2 Nα

ε

1
l2
sf

− 1
l2

. (A.33)

The general solutions satisfying the condition

�μch,α −�μch,γ = �μ (A.34)

correspond to

A = A′ B = B ′. (A.35)

Inserted in the expression for the charge conservation

f�nα + g�nγ = 0 (A.36)

we have

f Nα
(

A exp
( x

l

)
+ B exp

(
− x

l

)
+ pα�μ

)

+ gNγ
(

A exp
( x

l

)
+ B exp

(
− x

l

)
+ pγ�μ

)
= 0 (A.37)

⇒ ( f Nα + gNγ )
(

A exp
( x

l

)
+ B exp

(
− x

l

))
+ ( f Nαpα + gNγ pγ )�μ = 0,

for all x (A.38)

⇒ f Nαpα + gNγ pγ = 0 and A = B = 0 (A.39)

⇒ f Nα

(
σγ

σtl2
sf

− e2 Nγ
ε

)

+ gNγ

(

− σα

σtl2
sf

+ e2 Nα
ε

)

= 0. (A.40)

A solution can be written as

f = Nγ

(
σα

σtl2
sf

− e2 Nα
ε

)

g = Nα

(
σγ

σtl2
sf

− e2 Nγ
ε

)

.

(A.41)

A.4. ls f as a function of lα , lγ and l

The relation between L and the electronic relaxation times has been found to be

L = e
Nα(EF)Nγ (EF)

f Nα(EF)+ gNγ (EF)

(
g

τα→γ

+ f

τγ→α

)

. (A.42)

Inserting the expression for f and g obtained in the previous subsection, L becomes

L = e

1
σtl2

sf

(
σαNγ
τγ→α

+ σγ Nα
τα→γ

)
− e2 NαNγ

ε

(
1

τα→γ
+ 1

τγ→α

)

1
l2
sf

− 1
l2

. (A.43)

Furthermore, according to equation (A.19), the coefficient L can also be written in the
following form:

L = σασγ

e σt l2
sf

. (A.44)
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The two results lead to the equation

e2

1
σtl2

sf

(
σαNγ
τγ→α

+ σγ Nα
τα→γ

)
− e2 Nα Nγ

ε

(
1

τα→γ
+ 1

τγ→α

)

1
l2
sf

− 1
l2

= σασγ

σt l2
sf

. (A.45)

Let us define the typical diffusion lengths per channel lα and lγ such that

⎧
⎨

⎩

l2
α = σα

e2 Nα
τα→γ

l2
γ = σγ

e2 Nγ
τγ→α

⇒

⎧
⎪⎨

⎪⎩

1
τα→γ

= σα
e2 Nαl2

α

1
τγ→α

= σγ

e2 Nγ l2
γ

⇒

⎧
⎪⎪⎨

⎪⎪⎩

σαNγ
τγ→α

= σγ σα

e2l2
γ

σγ Nα
τα→γ

= σγ σα

e2l2
α

.

(A.46)

Equation (A.45) can be rewritten as

σασγ

e2σtl2
sf

(
1
l2
γ

+ 1
l2
α

)
− NαNγ

ε

(
σα

Nα l2
α

+ σγ
Nγ l2

γ

)

1
l2
sf

− 1
l2

= σασγ

e2 σt l2
sf

(A.47)

⇒ σt

Nα + Nγ

(
Nγ
σγ l2

α

+ Nα
σαl2

γ

)

l4
sf −

[

l2

(
1

l2
γ

+ 1

l2
α

)

+ 1

]

l2
sf + l2 = 0. (A.48)

(a) Limits: For metals, the screening length is much smaller than the diffusion lengths of
both channels:

(1) l/ lαγ � 0:

σt

Nα + Nγ

(
Nγ
σγ l2

α

+ Nα
σαl2

γ

)

l2
sf − 1 = 0

⇒ 1
l2
sf

= Nγ /(Nα + Nγ )
σγ /(σα + σγ )

1
l2
α

+ Nα/(Nα + Nγ )
σα/(σα + σγ )

1
l2
γ

. (A.49)

The other limit gives:
(2) l/ lαγ ⇒ ∞:

l2

[

1 −
(

1

l2
α

+ 1

l2
γ

)

l2
sf

]

= 0 ⇒ 1

l2
sf

= 1

l2
α

+ 1

l2
γ

. (A.50)

But this second limit is not expected for usual materials.

References

[1] Albert F J, Katine J A, Buhrman R A and Ralph D C 2000 Appl. Phys. Lett. 77 3809
[2] Myers E B, Albert F J, Sankey J C, Bonet E, Buhrman R A and Ralph D C 2002 Phys. Rev. Lett. 89 196801
[3] Grollier J, Cros V, Hamzic A, George J M, Jaffes H, Fert A, Faini G, Ben Youssef J and Le Gall H 2001 Appl.

Phys. Lett. 78 3663
[4] Sun J Z, Monsma D J, Abraham D W, Rooks M J and Koch R H 2002 Appl. Phys. Lett. 81 2202
[5] Wegrowe J-E, Hoffer X, Guittienne Ph, Fabian A, Ansermet J-Ph and Olive E 2002 Appl. Phys. Lett. 80 3775
[6] Oezyilmaz B, Kent A D, Monsma D, Sun J Z, Rooks M J and Koch R H 2003 Phys. Rev. Lett. 91 067203
[7] Deac A, Lee K J, Liu Y, Redon O, Li M, Wang P, Nozières J-P and Dieny B 2006 Phys. Rev. B 73 064414
[8] Pereira L G, Boulle O, Sanchez M M, Cros V, Petroff F and Fert A 2006 Physica B 384 33
[9] Wegrowe J-E, Kelly D, Jaccard Y, Guittienne Ph and Ansermet J-Ph 1999 Europhys. Lett. 45 626

[10] Kelly D, Wegrowe J-E, Truong T-K, Hoffer X, Guittienne Ph and Ansermet J-Ph 2003 Phys. Rev. B 68 134425
[11] Wegrowe J-E, Dubey M, Wade T, Drouhin H-J and Konczykowski M 2004 J. Appl. Phys. 96 4490
[12] Tsoi M, Jansen A G M, Bass J, Chiang W-C, Seck M, Tsoi V and Wyder P 1998 Phys. Rev. Lett. 80 4281

Tsoi M, Jansen A G M, Bass J, Chiang W-C, Seck M, Tsoi V and Wyder P 2000 Nature 406 6791

42

http://dx.doi.org/10.1063/1.1330562
http://dx.doi.org/10.1103/PhysRevLett.89.196801
http://dx.doi.org/10.1063/1.1374230
http://dx.doi.org/10.1063/1.1506794
http://dx.doi.org/10.1063/1.1476065
http://dx.doi.org/10.1103/PhysRevLett.91.067203
http://dx.doi.org/10.1103/PhysRevB.73.064414
http://dx.doi.org/10.1016/j.physb.2006.05.035
http://dx.doi.org/10.1209/epl/i1999-00213-1
http://dx.doi.org/10.1103/PhysRevB.68.134425
http://dx.doi.org/10.1063/1.1767610
http://dx.doi.org/10.1103/PhysRevLett.80.4281
http://dx.doi.org/10.1038/35017512


J. Phys.: Condens. Matter 19 (2007) 165213 J-E Wegrowe et al

[13] Tsoi M, Sun J Z, Rooks M J, Koch R H and Parkin S S P 2004 Phys. Rev. B 69 100406(R)
[14] Ji Y, Chien C L and Stiles M D 2003 Phys. Rev. Lett. 90 106601

Ji Y, Chien C L and Stiles M D 2005 Phys. Rev. B 72 014446
[15] Rippard W H, Pufall M R, Kaka S, Russek S E and Silva T J 2004 Phys. Rev. Lett. 92 027201
[16] Berger L 1984 J. Appl. Phys. 55 1954

Freitas P P and Berger L 1985 J. Appl. Phys. 57 1266
[17] Grollier J, Lacour D, Cros V, Hamzic A, Vaures A and Fert A 2002 J. Appl. Phys. 92 4825
[18] Vernier N, Allwood D A, Atkinson D, Cooke M D and Cowburn R P 2004 Europhys. Lett. 65 526
[19] Thiaville A, Nakatani Y, Miltat J and Vernier N 2004 J. Appl. Phys. 95 7049
[20] Klaeui M, Vaz C A F, Bland J A C, Wernsdorfer W, Faini G, Cambril E, Heyderman L J, Nolting F and

Ruediger U 2005 Phys. Rev. Lett. 94 106601
[21] Chen Y-C, Lin Y-A, Chen D-C, Yao Y-D, Lee S-F and Liou Y 2005 J. Appl. Phys. 97 10J703
[22] Viret M, Vanhaverbeke A, Ott F and Jacquinot J-F 2005 Phys. Rev. B 72 140403
[23] Thiaville A, Nakatani Y, Miltat J and Suzuki Y 2005 Europhys. Lett. 69 990
[24] Thomas L, Hayashi M, Jiang X, Moriya R, Rettner C and Parkin S S P 2006 Nature 443 197
[25] Urazhdin S, Norman O, Birge W, Pratt W P and Bass J 2003 Phys. Rev. Lett. 92 146803

Urazhdin S, Kurt H, Pratt W P and Bass J 2003 Appl. Phys. Lett. 83 114
[26] Wegrowe J-E 2003 Phys. Rev. B 68 214414
[27] Fabian A, Terrier C, Serrano Guisan S, Hoffer X, Dubey M, Gravier L, Ansermet J-Ph and Wegrowe J-E 2003

Phys. Rev. Lett. 91 257209
[28] Pufall M R, Rippard W H, Kaka S, Russek S E and Silva T J 2004 Phys. Rev. B 69 214409
[29] Guittienne Ph, Wegrowe J-E, Kelly D and Ansermet J-Ph 2001 IEEE Trans. Magn. Magn. 37 2126

Guittienne Ph, Gravier L, Wegrowe J-E and Ansermet J-Ph 2002 J. Appl. Phys. 92 2743
Wegrowe J-E, Hoffer X, Guittienne Ph, Fabian A, Gravier L, Wade T and Ansermet J-Ph 2002 J. Appl. Phys.

91 6806
[30] Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A and Ralph D C 2003 Nature

425 380
[31] Covington M, AlHajDarwish M, Ding Y, Gokemeijer N J and Seigler M A 2004 Phys. Rev. B 69 184406
[32] Krivorotov I N, Emley N C, Sankey J C, Kiselev S I, Ralph D C and Buhrman R A 2005 Science 307 28
[33] Devolder T, Crozat P, Chappert C, Miltat J, Tulapurkar A, Suzuki Y and Yagami K 2005 Phys. Rev. B 71 184401
[34] Berger L 1996 Phys. Rev. B 54 9353

Berger L 1997 J. Appl. Phys. 81 4880
[35] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[36] Prigogine I and Mazur P 1953 Physica 19 241
[37] Kondepudi D and Prigogine I 1998 Modern Thermodynamics (New York: Wiley)
[38] Guggenheim E A 1969 Thermodynamics (Amsterdam: North-Holland)
[39] Stueckelberg E C G and Scheurer P B 1974 Thermocinétique Phénoménologique Galiléenne (Basel: Birkauser)
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[51] Onsager L 1996 The Collected Work of Lars Onsager. With Commentary (World Scientific Series in 20th Century

Physics vol 17) ed P C Hemmer, H Holden and S Kjelstrup Ratkje (New Jersey: World Scientific)
[52] Shi J, Parkin S S P, Xing L and Salamon M B 1993 J. Appl. Phys. 73 5524
[53] Gravier L, Serrano-Guisan S, Reuse F and Ansermet J-Ph 2005 Phys. Rev. B 73 024419
[54] Mott N F and Jones H 1953 Theory of the Properties of Metal and Alloys (Oxford: Oxford University Press)
[55] Stearns M B 1973 Phys. Rev. B 8 4383
[56] Fert A and Cambell I A 1976 J. Phys. F: Met. Phys. 6 849
[57] Potter R 1974 Phys. Rev. B 10 4626
[58] McGuire T R and Potter R I 1975 IEEE Trans. 11 1018

43

http://dx.doi.org/10.1103/PhysRevLett.90.106601
http://dx.doi.org/10.1103/PhysRevB.72.014446
http://dx.doi.org/10.1103/PhysRevLett.92.027201
http://dx.doi.org/10.1063/1.333530
http://dx.doi.org/10.1063/1.334524
http://dx.doi.org/10.1063/1.1507820
http://dx.doi.org/10.1209/epl/i2003-10112-5
http://dx.doi.org/10.1063/1.1667804
http://dx.doi.org/10.1103/PhysRevLett.94.106601
http://dx.doi.org/10.1063/1.1850254
http://dx.doi.org/10.1103/PhysRevB.72.140403
http://dx.doi.org/10.1209/epl/i2004-10452-6
http://dx.doi.org/10.1038/nature05093
http://dx.doi.org/10.1103/PhysRevLett.91.146803
http://dx.doi.org/10.1063/1.1592311
http://dx.doi.org/10.1103/PhysRevB.68.214414
http://dx.doi.org/10.1103/PhysRevLett.91.257209
http://dx.doi.org/10.1103/PhysRevB.69.214409
http://dx.doi.org/10.1109/20.951096
http://dx.doi.org/10.1063/1.1497695
http://dx.doi.org/10.1063/1.1455602
http://dx.doi.org/10.1038/nature01967
http://dx.doi.org/10.1103/PhysRevB.69.184406
http://dx.doi.org/10.1126/science.1105722
http://dx.doi.org/10.1103/PhysRevB.71.184401
http://dx.doi.org/10.1103/PhysRevB.54.9353
http://dx.doi.org/10.1063/1.364902
http://dx.doi.org/10.1016/0304-8853(96)00062-5
http://dx.doi.org/10.1016/S0031-8914(53)80026-1
http://dx.doi.org/10.1109/16.491259
http://dx.doi.org/10.1016/S0378-4371(98)00353-7
http://dx.doi.org/10.1088/0143-0807/20/4/303
http://dx.doi.org/10.1073/pnas.191360398
http://dx.doi.org/10.1016/S0378-4371(99)00163-6
http://dx.doi.org/10.1103/PhysRevB.62.1067
http://dx.doi.org/10.1103/PhysRevB.73.134422
http://arxiv.org/abs/cond-mat/0408410
http://dx.doi.org/10.1063/1.353690
http://dx.doi.org/10.1103/PhysRevB.73.024419
http://dx.doi.org/10.1103/PhysRevB.8.4383
http://dx.doi.org/10.1088/0305-4608/6/5/025
http://dx.doi.org/10.1103/PhysRevB.10.4626


J. Phys.: Condens. Matter 19 (2007) 165213 J-E Wegrowe et al

[59] Drouhin H-J 2001 Spin-dependent scattering in transition metals J. Appl. Phys. 89 6805
[60] Blatt F J, Schroeder P A, Foiles C L and Greig D 1976 Thermoelectric Power of Metals (New York: Plenum)

chapter 5
[61] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A and

Chazelas J 1988 Phys. Rev. Lett. 61 2472
Binasch G, Grunberg P, Saurenbach F and Zinn W 1989 Phys. Rev. B 39 4828

[62] Awschalom D D and Kikkawa J M 1999 Phys. Today 53 33
[63] Viret M, Vignoles D, Cole D, Coey J M D, Allen W, Daniel D S and Gregg J F 1996 Phys. Rev. B 53 8464
[64] Levy P M and Zhang S 1997 Phys. Rev. Lett. 79 5110
[65] Ruediger U, Yu J, Thomas L, Parkin S S P and Kent A D 1999 Phys. Rev. B 59 11914
[66] Wegrowe J-E, Comment A, Jaccard Y, Ansermet J-Ph, Dempsey N M and Nozières J-Ph 2000 Phys. Rev. B

61 12216
[67] Gijs M A M and Bauer G E W 1997 Adv. Phys. 46 285
[68] Nesbet R K 1998 IBM J. Dev. 42 53
[69] Levy P M and Mertig I 2002 Spin Dependent Transport in Magnetic Nanostructures ed S Maekawa and

T Shino (London: Taylor and Francis)
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